OPTIMASI PERLAKUAN EKSPLAN PADA KULTUR ORGAN VEGETATIF TANAMAN KARET (HEVEA BRASILIENSIS MUELL. ARG.) KLON PB 330

Authors

  • Lestari Admojo Getas Research Station
  • Nur Eko Prasetyo Getas Research Station

DOI:

https://doi.org/10.22302/ppk.wp.v37i2.581

Keywords:

klon karet, Hevea brasiliensis, PB 330, induksi kalus, kultur jaringan

Abstract

Perkembangan sistem perbanyakan klonal melalui teknik kultur jaringan tanaman karet  masih terus dikaji. Embrio fase torpedo berhasil diperoleh pada tahun 2012 menggunakan eksplan petiol klon PB 330, namun persentasenya sangat rendah akibat ketidakstabilan kalus friabel yang diperoleh, dan adanya hambatan fase diferensiasi selanjutnya. Hambatan tersebut berupa tingginya tingkat kontaminasi dan intensitas browning. Serangkaian penelitian pendahuluan dilakukan dalam upaya optimasi perolehan kalus friabel yang lebih baik. Penelitian tersebut meliputi teknik sterilisasi untuk meminimalkan tingkat kontaminasi, teknik eliminasi browning, pemilihan bagian dan fase eksplan dan kombinasi zat pengatur tumbuh dalam media kultur. Rangkaian penelitian tersebut dilakukan di Laboratorium Bioteknologi, Fakultas Biologi, Universitas Gadjah Mada (UGM) dan Laboratorium Kultur Jaringan, Balai Penelitian Getas, sepanjang Oktober 2013 hingga Oktober 2017. Hasil penelitian menunjukkan bahwa beberapa optimasi perlakuan sumber eksplan berhasil dilakukan. Kontaminasi berhasil ditekan hingga 33% pada kultur petiol dengan perlakuan prasterilisasi perendaman eksplan dalam fungisida Dithane M-45 selama 24 jam, kemudian disterilisasi dengan NaClO 5,25% dan HgCl2 0,2%. Penurunan kontaminasi juga didukung dengan  penempatan sumber eksplan di luar area pembibitan karet. Intensitas browning berhasil ditekan hingga 7,5% dengan merendam eksplan dalam larutan asam askorbat steril selama 30 menit sebelum tanam. Penurunan intensitas browning diperoleh dengan pemilihan fase eksplan yang tepat (pertengahan flush) dan minimal pelukaan pada eksplan. Penambahan auksin ganda NAA 0,1 ppm+2,4-D 1 ppm ke dalam media MS modifikasi dan menempatkan sumber eksplan di bawah kondisi ternaung berhasil meningkatkan persentase kalus friabel hingga 60%. Protokol tersebut perlu terus dioptimasi untuk mengetahui respon diferensiasi selanjutnya.

Author Biography

Lestari Admojo, Getas Research Station

plant breeding department

References

Admojo, L., & Indrianto, A. (2016). Pencegahan browning fase inisasi kalus pada kultur midrib daun klon karet (Hevea brasiliensis Muell Arg) Pb 330. Jurnal Penelitian Karet, 34(1), 25-34. doi:10.22302/ppk.jpk.v34i1.220.

Admojo, L., Indriyanto, A., Komalasari, R. D., Hadi, H., & Prasetyo, N. E. (2012, 19-20 September 2012). Induksi kalus embriogenik eksplan jaringan vegetatif tanaman karet klonal. Tulisan disajikan pada Lokakarya Konferensi Nasional Karet 2012, Yogyakarta.

Arpita, S., Subroto, D., Pinaki, B., & Bidyut, B. (2010). Inhibition of polyphenol oxidase in banana, apple and mushroom by using different antibrowning agents under different conditions. International Journal of Chemical Sciences, 8(5), 5550-5558.

Blackmon, W. J., Reynolds, B. D., & Postek, C. E. (1981). Production of somatic embryos from callused cantaloupe hypocotyls explants. Horticultural Science, 16(3), 451-451.

Blanc, G., Michaux-Ferrière, N., Teisson, C., Lardet, L., & Carron, M. P. (1999). Effects of carbohydrate addition on the induction of somatic embryogenesis in Hevea brasiliensis. Plant Cell, Tissue and Organ Culture, 59(2), 103-112.

Cailloux, F., Julien-Guerrier, J., Linossier, L., & Coudret, A. (1996). Long-term somatic embryogenesis and maturation of somatic embryos in Hevea brasiliensis. Plant science, 120(2), 185-196.

Carrier, D.-J., Cosentino, G., Neufeld, R., Rho, D., Weber, M., & Archambault, J. (1990). Nutritional and hormonal requirements of Ginkgo biloba embryo-derived callus and suspension cell culture. Plant Cell Reports, 8(11), 635-638. doi:10.1007/BF00269981.

Carron, M. P., Etienne, H., Michaux-Ferriere, N., & Montoro, P. (1995). Somatic Embryogenesis in Rubber Tree (Hevea brasiliensis Müll. Arg.). In Y. P. S. Bajaj (Ed.), Somatic Embryogenesis and Synthetic Seed I. Heidelberg, Germany: Springer Berlin Heidelberg.

Cassells, A. C. (1979). The Effect of 2, 3.5 Triiodobenzoic Acid on Caulogenesis in Callus Cultures of Tomato and Pelargonium. Physiologia Plantarum, 46(2), 159-164. doi:10.1111/j.1399-3054.1979.tb06550.x.

Chen, Z., Qian, C., Qin, M., Xu, X., & Xiao, Y. (1982). Recent advances in anther culture of Hevea brasiliensis (Muell.-Arg.). Theoretical and Applied Genetics, 62(2), 103-108. doi:10.1007/bf00293340.

Chuanqin, W. Z. Z. X. C., Gaojun, W. H. L. Q. F., & Wenjuan, L. (1980). Induction of rubber plantlets from anther of hevea brasiliensis muell. Arg. In vitro. Chinese Journal of Tropical Crops, 1, 002.

Dąbski, M., & Parzymies, M. (2007). The effect of auxins: IAA, IBA and NAA on rooting of Hebe buchananii (Hook) and Hebe canterburiensis (JB Armstr.)‘Prostrata’in vitro. Acta Scientiarum Polonorum Hortorum Cultus, 6(1), 9-14.

Daud, N. H., Jayaraman, S., & Mohamed, R. (2012). Methods Paper: An improved surface sterilization technique for introducing leaf, nodal and seed explants of Aquilaria malaccensis from field sources into tissue culture. Asia-Pacific Journal of Molecular Biology and Biotechnology, 20(2), 55-58.

Estrela, C., Ribeiro, R. G., Estrela, C. R., Pécora, J. D., & Sousa-Neto, M. D. (2003). Antimicrobial effect of 2% sodium hypochlorite and 2% chlorhexidine tested by different methods. Brazilian Dental Journal, 14(1), 58-62.

Fang, Y., Mei, H., Zhou, B., Xiao, X., Yang, M., Huang, Y., . . . Tang, C. (2016). De novo transcriptome analysis reveals distinct defense mechanisms by young and mature leaves of Hevea brasiliensis (Para Rubber Tree). Scientific reports, 6(33151), 1-10. doi: 10.1038/srep33151.

John, K. S., Bhat, S., & Rao, U. P. (2003). Biochemical characterization of sap (latex) of a few Indian mango varieties. Phytochemistry, 62(1), 13-19. doi:10.1016/S0031-9422(02)00441-7.

Kaviani, B. (2015). Some Useful Information about Micropropagation. Journal of Ornamental & Horticultural Plants, 5(1), 29-40.

Kieffer, M., Neve, J., & Kepinski, S. (2010). Defining auxin response contexts in plant development. Current Opinion in Plant Biology, 13(1), 12-20.

Klemš, M., Truksa, M., Macháccaron, I., Eder, J., & Procházka, S. (1998). Uptake, transport and metabolism of 14C-2, 4-dichlorophenoxyacetic acid (14C-2, 4-d) in cucumber (Cucumis sativus L.) explants. Plant growth regulation, 26(3), 195-202. doi:10.1023/A:1006159021969.

Leifert, C., Morris, C. E., & Waites, W. M. (1994). Ecology of Microbial Saprophytes and Pathogens in Tissue Culture and Field-Grown Plants: Reasons for Contamination Problems In Vitro. Critical Reviews in Plant Sciences, 13(2), 139-183. doi:10.1080/07352689409701912.

Lokerse, A. S., & Weijers, D. (2009). Auxin enters the matrix—assembly of response machineries for specific outputs. Current Opinion in Plant Biology, 12(5), 520-526.

Loschiavo, F., Pitto, L., Giuliano, G., Torti, G., Nuti-Ronchi, V., Marazziti, D., . . . Terzi, M. (1989). DNA methylation of embryogenic carrot cell cultures and its variations as caused by mutation, differentiation, hormones and hypomethylating drugs. Theoretical and Applied Genetics, 77(3), 325-331. doi:10.1007/BF00305823.

Marks, T., & Simpson, S. E. (1990). Reduced phenolic oxidation at culture initiation in vitro following the exposure of field-grown stockplants to darkness or low levels of irradiance. Journal of Horticultural Science, 65(2), 103-111. doi:10.1080/00221589.1990.11516036.

Mellidou, I., Buts, K., Hatoum, D., Ho, Q. T., Johnston, J. W., Watkins, C. B., . . . Nicolai, B. M. (2014). Transcriptomic events associated with internal browning of apple during postharvest storage. BMC. Plant Biology, 14(1), 328-345.

Muhamad, N., Chirapongsatonkul, N., & Churngchow, N. (2012). Defense-related polyphenol oxidase from Hevea brasiliensis cell suspension: Purification and characterization. Applied Biochemistry and Biotechnology, 167(1), 177-189. doi:10.1007/s12010-012-9690-z.

Nikolaeva, T., Zagoskina, N., & Zaprometov, M. (2009). Production of phenolic compounds in callus cultures of tea plant under the effect of 2, 4-D and NAA. Russian Journal of Plant Physiology, 56(1), 45-49. doi:10.1134/S1021443709010075.

Noriega, C., & Söndahl, M. R. (1991). Somatic embryogenesis in hybrid tea roses. Nature Biotechnology, 9(10), 991–993. doi:10.1038/nbt1091-991.

Okushima, Y., Overvoorde, P. J., Arima, K., Alonso, J. M., Chan, A., Chang, C., . . . Theologis, A. (2005). Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. The Plant Cell, 17(2), 444-463.

Parry, G., Calderon-Villalobos, L. I., Prigge, M., Peret, B., Dharmasiri, S., Itoh, H., . . . Estelle, M. (2009). Complex regulation of the TIR1/AFB family of auxin receptors. Proceedings of the National Academy of Sciences, 106(52), 22540–22545.

Rao, M., & Patel, T. (2013). Protective effect of curcumin on mercuric chloride induced oxidative stress in rats. Indian Journal of Applied Research, 3(11), 541-543.

Roberts, D., Flinn, B., Webb, D., Webster, F., & Sutton, B. (1989). Characterization of immature embryos of interior spruce by SDS-PAGE and microscopy in relation to their competence for somatic embryogenesis. Plant Cell Reports, 8(5), 285-288. doi:10.1007/BF00274131.

Ru, Z., Lai, Y., Xu, C., & Li, L. (2013). Polyphenol oxidase (PPO) in early stage of browning of Phalaenopsis leaf explants. Journal of Agricultural Science, 5(9), 57-64.

Ruaud, J., & Pâques, M. (1995). Somatic embryogenesis and rejuvenation of trees. In S. Jain, P. Gupta, & R. Newton (Eds.), Somatic Embryogenesis In Woody Plants (Vol. 1, pp. 99-118). Dordrecht, Netherland: Kluwer Academic Publisher.

Seneviratne, P., Flegmann, A., & Wijesekera, G. (1995). The problem of surface sterilization of shoot materials of Hevea. JI Rubber Research Institute of Sri Lanka, 75(1), 51-60.

Singh, V., Tyagi, A., Chauhan, P., Kumari, P., & Kaushal, S. (2011). Identification and prevention of bacterial contimination on explant used in plant tissue culture labs. International Journal of Pharmacy and Pharmaceutical Sciences, 3(4), 160-163.

Terzi, M., & Schiavo, F. L. (1990). Developmental mutants in carrot. In H. I. J. Nijkamp, I. H. W. Van Der Plas, & J. Van Aartrijk (Eds.), 1990 Progress in Plant Cellular and Molecular Biology (pp. 391-397). Dortrecht, Netherlands: Kluwer Academic Publishers.

Tiwari, A., Tripathi, S., Lal, M., & Mishra, S. (2012). Screening of some chemical disinfectants for media sterilization during in vitro micropropagation of sugarcane. Sugar Tech, 14(4), 364-369. doi:10.1007/s12355-012-0178-5.

Tromas, A., Paponov, I., & Perrot-Rechenmann, C. (2010). Auxin binding protein 1: Functional and evolutionary aspects. Trends In Plant Science, 15(8), 436-446.

Vandenbussche, F., Vriezen, W. H., Smalle, J., Laarhoven, L. J., Harren, F. J., & Van Der Straeten, D. (2003). Ethylene and auxin control the Arabidopsis response to decreased light intensity. Plant Physiology, 133(2), 517-527.

Venkatachalam, P., Jayasree, P. K., Sushmakumari, S., Jayashree, R., Rekha, K., Sobha, S., . . . Thulaseedharan, A. (2007). Current perspectives on application of biotechnology to assist the genetic improvement of rubber tree (Hevea brasiliensis Muell. Arg.): An Overview. Functional Plant Science and Biotechnology, 1(1), 1-17.

Walsh, T. A., Neal, R., Merlo, A. O., Honma, M., Hicks, G. R., Wolff, K., . . . Davies, J. P. (2006). Mutations in an auxin receptor homolog afb5 and in sgt1b confer resistance to synthetic picolinate auxins and not to 2,4-dichlorophenoxyacetic acid or indole-3-acetic acid in arabidopsis. Plant Physiology, 142(2), 542-552.

Zhang, B.-H., Liu, F., & Yao, C.-B. (2000). Plant regeneration via somatic embryogenesis in cotton. Plant Cell, Tissue and Organ Culture, 60(2), 89-94.

Zhou, Q.-N., Jiang, Z.-H., Huang, T.-D., Li, W.-G., Sun, A.-H., Dai, X.-M., & Li, Z. (2010). Plant regeneration via somatic embryogenesis from root explants of Hevea brasiliensis. African Journal of Biotechnology, 9(48), 8168-8173.

Downloads

Published

2018-12-10