ANALISIS PERUBAHAN STRUKTUR BIAYA DAN KEBUTUHAN TENAGA KERJA PADA PENERAPAN SISTEM SADAP FREKUENSI RENDAH DI PERUSAHAAN PERKEBUNAN KARET, SUMATERA UTARA

Cost structure change analysis and labor requirement for the implementation of low frequency tapping systems in rubber plantation companies.

LINDAWATI¹, Iif Rahmat FAUZI², Radike TISTAMA², dan ATMININGSIH³
¹Universitas Sumatera Utara, Program Pasca Sarjana Agribisnis
²Pusat Penelitian Karet, Unit Riset Sungai Petuh
³Universitas Muhammadiyah Sumatera Utara

Email: iifrahmatfauzi@gmail.com

Diterima: 4 Juli 2023 / Disetujui: 18 Oktober 2023

Abstract

Low prices and limited of skilled tappers are the main problems faced by rubber plantation companies today. The implementation of low frequency tapping systems is one of the strategies undertaken to deal with this problem. The low frequency tapping systems is a tapping management concept that is oriented towards low tapping cost and labor requirement. This study aims to analyze the cost structure and labor requirement in the implementation of low frequency tapping systems. The research was conducted with explanatory research using field observatory, literature review, and data simulation method. Partial budget analysis was carried out to see the financial feasibility of changing the tapping systems from the conventional tapping system d3 to the low frequency tapping systems d4, d5, and d6. The results showed that the implementation of the low frequency tapping systems d4, d5, and d6 caused a reduction costs of 25%, 40% and 50% respectively. To anticipate a decreasing of production due to reduced effective tapping days, there was an increasing of stimulant costs of 18%, 23% and 43% respectively. The total production costs due to the change from the d3 tapping system to the d4, d5, d6 tapping system was reduced by 22%, 35% and 57% respectively. Changes in the costs structure were caused more by changes in the number of Working Days due to a decrease in the need for tappers Working Days and an increase in the need for stimulant Working Days. The implementation of tapping system from d3 to d4, d5, d5 and d6 resulted in a changing in the level of business financially feasibility from an RCR value of 1.39 to 1.20; 1.08; and 0.90 respectively. The implementation of low frequency tapping systems still tends to be dynamic and were more of a cost reduction program that aims to maintain the company’s financial condition in the short term. As a strategic plan, the implementation of low frequency tapping systems aims to anticipate the long term shortage of skilled tappers so that rubber plantation companies remain in a competitive position.

Keywords: natural rubber; tapping system; cost reduction strategy; tapper scarcity.

Abstrak

Rendahnya harga dan terbatasnya jumlah tenaga penyadap terampil merupakan masalah utama yang dihadapi perusahaan perkebunan karet saat ini. Penerapan sistem sadap frekuensi rendah adalah salah satu strategi yang dilakukan untuk menghadapi masalah tersebut. Sistem sadap frekuensi rendah adalah konsep manajemen penyadapan yang berorientasi pada rendahnya kebutuhan biaya dan tenaga kerja penyadapan. Penelitian ini bertujuan untuk menganalisis struktur biaya dan kebutuhan tenaga kerja pada penerapan sistem sadap frekuensi rendah. Penelitian dilakukan dengan metode eksploratory research melalui observasi lapangan, studi literatur, dan simulasi data. Analisis anggaran parsiial dilakukan untuk
melihat kelayakan finansial perubahan sistem sadap dari sistem sadap konvensional d3 ke sistem sadap frekuensi rendah d4, d5, dan d6. Hasil penelitian menunjukkan bahwa penerapan sistem sadap frekuensi rendah d4, d5, d6 menyebabkan penurunan biaya tenaga penyadap masing-masing sebesar 25%, 40%, dan 50%. Sebaliknya, untuk mengantisipasi penurunan produksi akibat berkurangnya hari sadap efektif maka terjadi kenaikan biaya stimulansia masing-masing sebesar 18%, 23% dan 43%. Total biaya produksi akibat perubahan sistem sadap d3 ke sistem sadap d4, d5, d6 berkurang masing-masing 22%, 35%, dan 57%. Perubahan struktur biaya lebih disebabkan oleh perubahan jumlah HK akibat penurunan kebutuhan HK penyadap dan kenaikan kebutuhan HK stimulansia. Penerapan sistem sadap dari d3 ke d4, d5, d6 mengakibatkan perubahan tingkat kelayakan finansial usaha dari nilai RCR sebesar 1,39 menjadi masing-masing sebesar 1,20; 1,08; dan 0,90. Penerapan sistem sadap frekuensi rendah masih cenderung dinamis dan lebih merupakan program penurunan biaya yang bertujuan untuk mempertahankan kondisi finansial perusahaan dalam jangka pendek. Sebagai rencana strategis, penerapan sistem sadap frekuensi rendah bertujuan untuk mengantisipasi masalah kelangkaan tenaga penyadap terampil dalam jangka panjang agar perusahaan perkebunan karet tetap berada dalam posisi yang kompetitif.

Kata kunci: karet alam; sistem sadap; strategi penurunan biaya, kelangkaan penyadap

PENDAHULUAN


Penyadapan merupakan kegiatan utama dalam usaha budidaya tanaman karet dan menyumbang sebagian besar biaya produksi (Rodrigo et al., 2005). Penyadapan memangkas harganya hingga 44% dari harga Free on Board (FOB) (Sumarmadji, 2009). Penyadapan membantu kemampuan khusus yang menyebabkan kegiatan ini masih sangat bergantung pada keberadaan manusia. Belum ditemukannya teknologi mekanisasi yang handal dan memungkinkan kegiatan penyadapan menyebabkan biaya tenaga kerja penyadapan menjadi mahal (Widyasari et al., 2017). Kendati tersebut menyebabkan isu kelangkaan dan mahalnya upah tenaga kerja penyadap terampil yang menjadi masalah utama yang dihadapi perusahaan perkebunan karet saat ini (Fauzi et al., 2017).

Sistem sadap frekuensi rendah atau dikennen dengan istilah low frequency tapping (LFT) systems merupakan konsep manajemen sistem sadap tanaman karet yang berorientasi pada rendahnya frekuensi penyadapan. LFT systems dilakukan dengan memperpanjang interval penyadapan sehingga dalam suatu satuan luas (ha) dan waktu tertentu, frekuensi penyadapan menjadi rendah. Penerapan LFT systems akan menyebabkan hari sadap efektif (HSE) lebih kecil yang dalam prakteknya di lapangan dapat diterjemahkan dengan pengurangan sejumlah tenaga kerja penyadap. Penerapan LFT systems secara finansial bertujuan mengurangi biaya penyadapan dengan harapan tidak terjadi penurunan produksi yang berarti (Soumahin et al., 2009); (Nugrahani et al., 2017). Keunggulan LFT systems tersebut dianggap merupakan strategi yang relevan dalam menghadapi situasi agribisnis karet alam Indonesia saat ini.
Penerapan **LFT systems** di perusahaan perkebunan karet sebagai respon penurunan harga karet alam dan terbatasnya jumlah tanega penyadap terampil diterapkan secara dinamis. **LFT systems** lebih banyak diterapkan pada areal-areal yang cenderung kurang produktif dengan tujuan untuk meminimalkan kerugian. Penerapan **LFT systems** dalam hal ini diperoleh mampu menurunkan biaya produksi. Penerapan **LFT systems** juga dilakukan sebagai langkah untuk memobilisasi tenaga penyadap dari areal yang kurang produktif ke areal yang produktif sehingga aktivitas penyadapan berjalan lebih efektif dan efisien. Areal-areal tanaman yang kurang produktif akan menerapkan **LFT systems** dengan frekuensi sadap yang lebih rendah dengan kebutuhan tenaga penyadap yang lebih kecil.

Frekuensi sistem sadap d3 sebagai sistem sadap konvensional berangsur-angsur mulai ditinggalkan seiring dengan penerapan berbagai alternatif **LFT systems**. Frekuensi sistem sadap yang umum diterapkan adalah d4 hingga d6. Beberapa penelitian telah dilakukan untuk melihat bagaimana kelayakan ekonomi penerapan sistem sadap frekuensi rendah menggunakan analisis anggaran parsial sebagaimana (Wiyadasari et al., 2017). Hasil penelitian tersebut menunjukkan bahwa sistem sadap konvensional d3 masih lebih unggul secara finansial dibandingkan sistem sadap d4, d5, dan d6 yang diuji. Penerapan sistem sadap d4 dapat dilakukan pada saat perusahaan mengalami kesulitan untuk memperoleh tenaga penyadap. Analisis dilakukan dengan hanya memperhitungkan komponen biaya yang terlibat langsung dan berubah akibat perubahan teknologi yang diterapkan (Horton, 1982); (Adiyoga et al., 2020). Pertanyaan selanjutnya adalah bagaimana dampak penerapan beberapa alternatif **LFT systems** tersebut terhadap komponen biaya produksi lainnya dan bagaimana kaitannya dengan kebutuhan tenaga kerja di lapangan seiring dengan perubahan teknologi sistem sadap tersebut. Tulisan ini bertujuan menganalisis struktur biaya dan kebutuhan tenaga kerja akibat penerapan **LFT systems** di perusahaan perkebunan karet.

**BAHAN DAN METODE**


Jenis data yang dikumpulkan berupa data primer dan data sekunder. Data primer diperoleh dari hasil wawancara terhadap penyadap dan manajemen kebun yang meliputi asisten lapangan dan kranis afdeling. Data sekunder diperoleh melalui replikasi dokumen standard operasional kebun yang meliputi norma kerja dan biaya. Analisis data dilakukan melalui uji ANOVA satu arah untuk melihat perbedaan struktur biaya dan kebutuhan tenaga kerja diantar sejumlah alternatif sistem sadap yang diterapkan di lapangan, dengan uji lanjut menggunakan least square means comparison Tukey pada α = 0.05. Analisis anggaran parsial dilakukan untuk mengetahui tingkat profitabilitas dan kelayakan finansial akibat perubahan teknologi sistem sadap dari sistem sadap konvensional d3 ke sistem sadap frekuensi rendah d4, d5, d6 dengan parameter **Revenue and Cost Ratio (RCR)** dan Net Income (NI) (Horton, 1982); (Adiyoga et al., 2020).

77
HASIL DAN PEMBAHASAN

Perubahan Struktur Biaya Akibat Penerapan Beberapa Alternatif Sistem Sadap Frekuensi Rendah (Low Frequency Tapping Systems)

Biaya penyadapan

Menyadap adalah teknik menggali produksi tanaman karet yang dilakukan dengan memotong pembuluh lateks yang berada pada kulit tanaman. Penyadapan adalah kegiatan menyadap, dan penyadap adalah individu atau kelompok yang melakukan kegiatan penyadapan (Setiawan dan Andoko, 2008). Penyadapan secara teknis melibatkan berbagai faktor diantaranya panjang irisan (S), frekuensi sadap (d) dan aplikasi stimulan (ET) (Sumarmadjii, 2005). Kombinasi ketiganya membentuk sistem sadap dengan tata guna panel yang diatur sedemikian rupa untuk umurekonomi yang panjang.

Penerapan LFT systems dimaksudkan untuk menekan biaya penyadapan dari usaha budidaya tanaman karet (Nugrahani et al., 2017). Mekanisme penurunan biaya tersebut terjadi akibat bertambah panjangnya interval sadap yang menyebabkan berkurangnya hari sadap efektif (HSE) dalam satu satuan areal dan satu satuan waktu tertentu. Keuntungan dari rendahnya frekuensi sadap adalah rendahnya biaya kerja (HK) penyadapan. Tabel 2 memperlihatkan ratarata biaya penyadap/ha/tahun menurut frekuensi sistem sadap berdasarkan hasil observasi di lapangan. Tabel 3 merupakan hasil uji ANOVA single factor yang menyatakan nilai P-value = 5,56254E-09 lebih kecil dari α = 0,05 yang berarti terdapat perbedaan yang nyata pada biaya penyadap/ha/tahun menurut alternatif frekuensi sistem sadap yang diamati.
Analisis Perubahan Struktur Biaya dan Kebutuhan Tenaga Kerja pada Penerapan Sistem Sadap
Frekuensi Rendah di Perusahaan Perkebunan Karet, Sumatera Utara

Tabel 2. Rata-rata biaya penyadap menurut frekuensi sistem sadap
Table 2. Average of tapper cost by tapping systems frequency

<table>
<thead>
<tr>
<th>Frekuensi sadap</th>
<th>Biaya penyadap/ha/tahun (Rp)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BO-1</td>
<td></td>
</tr>
<tr>
<td>d3</td>
<td>16,654,530</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BO-2</td>
<td></td>
</tr>
<tr>
<td>d4</td>
<td>12,490,898</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HO-2.1</td>
<td></td>
</tr>
<tr>
<td>d5</td>
<td>9,992,718</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HO-2.2</td>
<td></td>
</tr>
<tr>
<td>d6</td>
<td>8,295,114</td>
<td></td>
</tr>
</tbody>
</table>

Tabel 3. Hasil uji ANOVA single factor terhadap rata-rata biaya penyadap.
Table 3. Result of ANOVA single factor test for average of tapper cost

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>P-value</th>
<th>F crit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between Groups</td>
<td>1.65085E+14</td>
<td>3</td>
<td>5.50283E+13</td>
<td>109.399821</td>
<td>5.56254E-09</td>
<td>3.49029482</td>
</tr>
<tr>
<td>Within Groups</td>
<td>6.03603E+12</td>
<td>12</td>
<td>5.03002E+11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1.71212E+14</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>


Gambar 1. Perbandingan biaya penyadap menurut frekuensi sistem sadap
Figure 1. Comparison of tapper cost by tapping frequency

Biaya stimulansia

Dampak negatif dari penerapan LFT systems terjadi pada pchorohan produksi kumulatif (kg/ha/tahun) yang berpotensi menurun – (Sumarmadjy et al., 2017). Kekhawatiran tersebut dapat dikompensasi dengan peningkatan intensitas stimulansia baik melalui peningkatan frekuensi maupun konsentrasi yang diterapkan (Soumshin et al., 2009); (Sainoi et al., 2017); dan (Rinojati & Rouf, 2020). Kombinasi frekuensi sadap dan intensitas stimulansia yang tepat diharapkan mampu mempertahankan produktivitas tanaman agar tetap tinggi.
Atmiringsih et al., (2018) dan Fauzi et al., (2022) dalam kajiananya yang mengamati kelayakan pengembangan beberapa alternatif sistem sadap frekuensi rendah mendapatkan bahwa biaya aplikasi stimulan mengalami peningkatan sejalan dengan peningkatan intensitas stimulan sebagai kompensasi penurunan frekuensi sistem sadap. Peningkatan biaya yang dimaksud secara berturut-turut dari d3 ke d4 dan seterusnya hingga ke d5 dan d6 adalah 18%, 23%, dan 43% (Tabel 4 dan Gambar 2). Hasil uji ANOVA single factor pada Tabel 5 memperlihatkan nilai P-value = 0,6174 lebih besar dari α = 0,05 yang bermakna tidak terdapat perbedaan yang nyata pada biaya stimulansia/ha/tahun menurut frekuensi sistem sadap yang diamati.

Tabel 4. Rata-rata biaya stimulansia menurut frekuensi sistem sadap

<table>
<thead>
<tr>
<th>Frekuensi sistem sadap</th>
<th>Biaya stimulansia/ha/tahun (Rp)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BO-1</td>
<td>BO-2</td>
</tr>
<tr>
<td>d3</td>
<td>214,395</td>
<td>668,622</td>
</tr>
<tr>
<td>d4</td>
<td>428,651</td>
<td>719,717</td>
</tr>
<tr>
<td>d5</td>
<td>535,814</td>
<td>720,283</td>
</tr>
<tr>
<td>d6</td>
<td>640,494</td>
<td>761,102</td>
</tr>
</tbody>
</table>

Tabel 5. Hasil uji ANOVA single factor terhadap rata-rata biaya stimulansia

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>P-value</th>
<th>F crit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between Groups</td>
<td>1.77255E+11</td>
<td>3</td>
<td>59084860588</td>
<td>0.61650153</td>
<td>0.617430918</td>
<td>3.49029482</td>
</tr>
<tr>
<td>Within Groups</td>
<td>1.15007E+12</td>
<td>12</td>
<td>95838952150</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>Total</td>
<td>1.32732E+12</td>
<td>15</td>
<td></td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
</tbody>
</table>

Gambar 2. Biaya aplikasi stimulan menurut frekuensi sistem sadap

Figure 2. Cost of stimulant by tapping frequency
Biaya aplikasi stimulan adalah komponen biaya terkecil dalam struktur biaya produksi tanaman karet. Sifat pekerjaan yang tergolong musiman membuat upah tenaga kerja stimulansia dapat diborongkan menurut basis tugas per satuan ancam. Sebagai contoh, di salah satu kebun PT Perkebunan Nusantara III (Persero), upah tenaga kerja penyadap per hari dibayar setara karyawan bergolongan sebesar Rp219.228,- sementara upah pekerjaan borong stimulan per ancam dibayar Rp25.000,-. Dengan besaran nilai tersebut, komponen biaya aplikasi stimulan menurut frekuensi sistem sadap berkisar antara 2,80% hingga 7,04% terhadap total biaya produksi (Fauzi et al., 2023).

Kombinasi frekuensi sistem sadap dengan intensitas stimulansia yang tepat

<table>
<thead>
<tr>
<th>Frekuensi sadap</th>
<th>Total biaya produksi (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tapping frequency</td>
<td>Total cost of production (%)</td>
</tr>
<tr>
<td>d3 (konvensional)</td>
<td>100</td>
</tr>
<tr>
<td>d4</td>
<td>78 – 84</td>
</tr>
<tr>
<td>d5</td>
<td>63 – 75</td>
</tr>
<tr>
<td>d6</td>
<td>56 – 68</td>
</tr>
</tbody>
</table>


Secara finansial sistem sadap d4 akan mampu menandungi sistem sadap d3 apabila terjadi kenaikan g/p/s sebesar 25% hingga 30% dari g/p/s d3. Kondisi tersebut sejalan dengan berkurangnya hari sadap efektif yang berkisar antara 25% hingga 28% akibat perubahan sistem sadap d3 ke d4 (Tabel 5). Soumahin et al. (2009) dalam penelitiannya menguji berbagai intensitas stimulansia pada frekuensi sadap d6 dengan kombinasi konsentrasi 2,5% hingga 5% dan rotasi 8 hingga 52 kali dalam satu tahun. Hasil penelitian menunjukkan bahwa konsentrasi 2,5% dengan rotasi stimulansia 26 kali dalam setahun mampu memberikan keuntungan yang setara dengan sistem sadap $\frac{1}{2}$sd4.ET.2.5%.10/y.

<table>
<thead>
<tr>
<th>Frekuensi sadap</th>
<th>Hari sadap efektif</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tapping frequency</td>
<td>Efective tapping days</td>
<td></td>
</tr>
<tr>
<td>d3 (konvensional)</td>
<td>98 – 110</td>
<td>100</td>
</tr>
<tr>
<td>d4</td>
<td>74 – 80</td>
<td>72 – 75</td>
</tr>
<tr>
<td>d5</td>
<td>59 – 64</td>
<td>58 – 60</td>
</tr>
<tr>
<td>d6</td>
<td>49 – 55</td>
<td>50</td>
</tr>
</tbody>
</table>
Biaya perawatan

Komponen biaya perawatan sering digolongkan ke dalam kelompok biaya tetap (fixed cost). Pengelompokan tersebut disebabkan karena pengeluaran biaya perawatan diperhitungkan berdasarkan luas areal efektif yang dikelola perusahaan dan berjumalah tetap dari waktu ke waktu. Kegiatan perawatan mencakup lahan dan tanaman. Kegiatan perawatan lahan terdiri atas pemupukan, pengendalian gulma dalam barisan melalui steep chemical weeding (SCW), pengendalian gulma antar barisan melalui interrow chemical weeding (ICW) dan dngkél anak kayu (DAK). Kegiatan perawatan tanaman terdiri atas kegiatan penanganan hama dan penyakit tanaman.


Selain disebabkan oleh penurunan biaya akibat program cost reduction, perubahan biaya perawatan tanaman juga disebabkan oleh peningkatan biaya penanggulangan penyakit yang terjadi akibat outbreak penyakit gugur daun Pestalotiopsis. Pengendalian penyakit gugur daun melalui aplikasi fogging pada umumnya secara rutin masih dilakukan untuk mencegah terjadinya serangan penyakit Oidium, Colletotrichum, dan Corynespora. Pada kondisi outbreak peningkatan biaya yang terjadi disebabkan oleh bertambahnya intensitas pengasapan/fogging baik pada dosis maupun frekuensi aplikasi. Tabel 8 memperlihatkan rincian biaya investasi dan operasionalisasi fogging Pestalotiopsis.

Tabel 8. Biaya investasi dan operasionalisasi fogging Pestalotiopsis
Table 8. Operational and investment Cost of fogging Pestalotiopsis

<table>
<thead>
<tr>
<th>No</th>
<th>Uraian (Pemborong)</th>
<th>Satuan</th>
<th>Rotasi</th>
<th>Rp/satuan</th>
<th>Norma</th>
<th>Biaya/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tenaga kerja</td>
<td>Rp/HK</td>
<td>4</td>
<td>55,000.00</td>
<td>0.33 HK/ha</td>
<td>72,600.00</td>
</tr>
<tr>
<td>2</td>
<td>Bahan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Ieksakonazol</td>
<td>Ltr</td>
<td>4</td>
<td>210,000.00</td>
<td>250 cc/ha</td>
<td>210,000.00</td>
</tr>
<tr>
<td></td>
<td>- Solar industri</td>
<td>Ltr</td>
<td>4</td>
<td>12,500.00</td>
<td>2 Ltr/ha</td>
<td>100,000.00</td>
</tr>
<tr>
<td></td>
<td>- Emulgator</td>
<td>Ltr</td>
<td>4</td>
<td>91,000.00</td>
<td>50 cc/ha</td>
<td>18,200.00</td>
</tr>
<tr>
<td></td>
<td>- Bensin</td>
<td>Ltr</td>
<td>4</td>
<td>10,000.00</td>
<td>2 Ltr/ha</td>
<td>20,000.00</td>
</tr>
<tr>
<td>3</td>
<td>Alat</td>
<td>Bh</td>
<td>1</td>
<td>27,000,000.00</td>
<td>5 /1000 ha</td>
<td>139,841.08</td>
</tr>
<tr>
<td></td>
<td>- Fulsfat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Biaya</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>560,641.08</td>
</tr>
</tbody>
</table>

82
Biaya Diagnosis Lateks dan Umum

Penerapan LFT systems dalam perkembangannya melibatkan input teknologi baru yaitu Diagnosis Lateks (Latex Diagnose/LD). Hasil dari kegiatan LD dianggap menjadi indikator kesiapan tanaman untuk menerapkan sistem sadap yang akan digunakan dalam upaya penggalian produksi selanjutnya. LD merupakan analisis beberapa kandungan senyawa di dalam lateks yang berkaitan dengan kemampuan tanaman menentang karat. LD dapat membantu memetakan kondisi fisiologis tanaman. Kondisi fisiologis yang dimaksud adalah apakah tanaman dalam kondisi over eksploitasi, optimum eksploitasi atau bahkan under eksploitasi. Pemetaan fisiologis yang sudah diperoleh digunakan untuk menentukan inisitas sadap, terutama dalam penentuan frekuensi sadap dan pemberian stimulan.

Tabel 9. Biaya investasi kegiatan LD di kebun sampel

<table>
<thead>
<tr>
<th>No</th>
<th>Nama Alat</th>
<th>Jumlah</th>
<th>Harga Setara (Rp)</th>
<th>Total (Rp)</th>
<th>No</th>
<th>Nama Bahan</th>
<th>Jumlah</th>
<th>Harga Setara (Rp)</th>
<th>Total (Rp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kater Bath</td>
<td>1</td>
<td>30,000,000.00</td>
<td>30,000,000.00</td>
<td>1</td>
<td>Sulfate KCl (1.229%): 96.97%, 2.5%</td>
<td>5</td>
<td>1,720,000.00</td>
<td>8,600,000.00</td>
</tr>
<tr>
<td>2</td>
<td>Spectrophotometer</td>
<td>1</td>
<td>61,000,000.00</td>
<td>61,000,000.00</td>
<td>2</td>
<td>Trisulfate Acid, C6H5SO3: 99.95%</td>
<td>2</td>
<td>5,470,000.00</td>
<td>10,940,000.00</td>
</tr>
<tr>
<td>3</td>
<td>Oera</td>
<td>1</td>
<td>25,100,000.00</td>
<td>25,100,000.00</td>
<td>3</td>
<td>THC1110: 100.00%</td>
<td>2</td>
<td>3,500,000.00</td>
<td>7,000,000.00</td>
</tr>
<tr>
<td>4</td>
<td>Relative Analytical Digital</td>
<td>1</td>
<td>30,300,000.00</td>
<td>30,300,000.00</td>
<td>4</td>
<td>Anthracene, C12H10N2: 99.9%</td>
<td>2</td>
<td>1,240,000.00</td>
<td>2,480,000.00</td>
</tr>
<tr>
<td>5</td>
<td>Bottle Dispenser 100-500 ml</td>
<td>1</td>
<td>17,000,000.00</td>
<td>17,000,000.00</td>
<td>5</td>
<td>Chlorine, Cl2: 99.9%</td>
<td>1</td>
<td>2,440,000.00</td>
<td>2,440,000.00</td>
</tr>
<tr>
<td>6</td>
<td>Bagel Barrel</td>
<td>1</td>
<td>20,800,000.00</td>
<td>20,800,000.00</td>
<td>6</td>
<td>C2H6NO: 100.00%</td>
<td>1</td>
<td>2,080,000.00</td>
<td>2,080,000.00</td>
</tr>
<tr>
<td>7</td>
<td>Bagel Stirrer</td>
<td>1</td>
<td>27,000,000.00</td>
<td>27,000,000.00</td>
<td>7</td>
<td>C6H5NO: 100.00%</td>
<td>1</td>
<td>2,700,000.00</td>
<td>2,700,000.00</td>
</tr>
<tr>
<td>8</td>
<td>Incontinent Apparatus</td>
<td>1</td>
<td>30,000,000.00</td>
<td>30,000,000.00</td>
<td>8</td>
<td>C6H5NO: 100.00%</td>
<td>1</td>
<td>3,000,000.00</td>
<td>3,000,000.00</td>
</tr>
</tbody>
</table>

Sub Jumlah: 244,380,000.00
PP 11%: 26,999,900.00
Total: 271,379,900.00
Sub Jumlah: 30,237,400.00
PP 11%: 4,336,110.00
Total: 34,573,510.00

Secara umum biaya diagnosis lateks mencakup biaya investasi alat dan bahan, serta biaya operasionalisasi laboratorium. Kegiatan LD masuk ke dalam biaya tidak langsung atau umum yang dipertanggunggungkan secara alokasi berdasarkan luas kebun. Biaya tidak langsung atau umum dalam proses produksi diketahui sebesar 21% dari total HPP diperoleh berdasarkan data historis dalam kurun waktu lima tahun terakhir di kebun sampel. Tabel 10 yang memperlihatkan persentase biaya tidak langsung terhadap total biaya produksi karet tahun 2017 hingga 2021 di Kebun Tanah Raja (KTARA) dan Kebun Gunung Para (KGPAR) sebagai kebun sampel.

Tabel 10. Persentase biaya tidak langsung terhadap total biaya produksi karet.

<table>
<thead>
<tr>
<th>Over head tanaman</th>
<th>Tahun (%)</th>
<th>2017</th>
<th>2018</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
<th>Rata-rata</th>
</tr>
</thead>
<tbody>
<tr>
<td>KTARA</td>
<td>16%</td>
<td>18%</td>
<td>24%</td>
<td>26%</td>
<td>29%</td>
<td>23%</td>
<td>23%</td>
</tr>
<tr>
<td>KGPAR</td>
<td>18%</td>
<td>17%</td>
<td>24%</td>
<td>21%</td>
<td>22%</td>
<td>20%</td>
<td>20%</td>
</tr>
<tr>
<td>Rata-rata</td>
<td>17%</td>
<td>17%</td>
<td>24%</td>
<td>24%</td>
<td>26%</td>
<td>21%</td>
<td>21%</td>
</tr>
</tbody>
</table>

Tabel 11. Struktur biaya produksi menurut frekuensi sistem sadap.

<table>
<thead>
<tr>
<th>Frekuensi sadap</th>
<th>Rata-rata biaya/ha/tahun (Rp)</th>
<th>Total (Rp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penyadap</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stimulansi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perawatan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Umum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d3</td>
<td>17,045,179</td>
<td>683,022</td>
</tr>
<tr>
<td>d4</td>
<td>12,781,978</td>
<td>804,597</td>
</tr>
<tr>
<td>d5</td>
<td>10,228,329</td>
<td>841,339</td>
</tr>
<tr>
<td>d6</td>
<td>8,514,552</td>
<td>978,250</td>
</tr>
</tbody>
</table>
Kebutuhan Hari Kerja (HK) Akibat Pencacahan Sistem Sadap Frekuensi Rendah

Komponen tenaga kerja yang terlibat langsung dalam kegiatan produksi tanaman karet adalah tenaga penyadap dan stimulansia. Penyadapan merupakan kegiatan utama dalam usaha budidaya tanaman karet karena berkaitan langsung dalam mekanisme penggalian produksi. Adapun stimulansia merupakan kegiatan pendukung yang bertujuan mendorong peningkatan produksi mencapai hasil yang optimal. Pada penyadapan dengan frekuensi sadap d3 kebutuhan tenaga penyadap mencapai 0,33 per satuan tugas penyadap (ha/ancak), sedangkan pada frekuensi sadap d4 kebutuhan penyadap menjadi 0,25 per satuan tugas penyadap, dan sejurusnya hingga frekuensi sadap d6 membutuhkan penyadap 0,17 per satuan tugas penyadap (Tabel 12). Satuan tugas penyadap diukur dalam satuan ancak, sehingga nilai rasio sebesar 0,33 berarti 1 orang tenaga penyadap mampu mengcover 3 ancal sadap dan sejurusnya. Dengan demikian semakin rendah fraksi penyadap sadap maka semakin kecil kebutuhan tenaga penyadap.

<table>
<thead>
<tr>
<th>Frekuensi sadap</th>
<th>Kebutuhan penyadap per satuan tugas</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Tapping frequency</strong></td>
<td><strong>Tapper requirement per one task</strong></td>
</tr>
<tr>
<td>d3 (konvensional)</td>
<td>0,33</td>
</tr>
<tr>
<td>d4</td>
<td>0,25</td>
</tr>
<tr>
<td>d5</td>
<td>0,20</td>
</tr>
<tr>
<td>d6</td>
<td>0,17</td>
</tr>
</tbody>
</table>

Penggunaan tenaga kerja menjadi salah satu faktor utama tingginya biaya produksi di perusahaan perkebunan. Di satu sisi, perusahaan perkebunan diharapkan menjadi sektor yang mampu menyerap tenaga kerja dalam jumlah yang besar. Di sisi lain, upah tenaga kerja yang terus meningkat tidak selalu berbanding lurus dengan produktivitas yang diharapkan perusahaan.

Pada perusahaan perkebunan karet tenaga penyadap menjadi ujung tombak pengelolaan produksi di lapangan. Sebagai
pekerjaan yang membantu keterampilan khusus, mencari tenaga penyadap yang terampil saat ini tertinggal sulit. Penerapan *LFT systems* adalah salah satu upaya yang dilakukan untuk mengatasi problem kelangkaan tenaga penyadap tersebut.


<table>
<thead>
<tr>
<th>Frekuensi sadap</th>
<th>Kebutuhan HK/ha/tahun</th>
<th>Rata-rata</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BO-1</td>
<td>BO-2</td>
<td>HO-2.1</td>
</tr>
<tr>
<td>d3</td>
<td>58.89</td>
<td>60.76</td>
<td>72.00</td>
</tr>
<tr>
<td>d4</td>
<td>44.17</td>
<td>45.57</td>
<td>54.00</td>
</tr>
<tr>
<td>d5</td>
<td>35.33</td>
<td>36.46</td>
<td>43.20</td>
</tr>
<tr>
<td>d6</td>
<td>29.22</td>
<td>30.38</td>
<td>36.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frekuensi sadap</th>
<th>Kebutuhan HK/ha/tahun</th>
<th>Rata-rata</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BO-1</td>
<td>BO-2</td>
<td>HO-2.1</td>
</tr>
<tr>
<td>d3</td>
<td>8.37</td>
<td>25.51</td>
<td>37.03</td>
</tr>
<tr>
<td>d4</td>
<td>22.33</td>
<td>34.02</td>
<td>61.71</td>
</tr>
<tr>
<td>d5</td>
<td>34.88</td>
<td>42.52</td>
<td>77.14</td>
</tr>
<tr>
<td>d6</td>
<td>50.04</td>
<td>51.02</td>
<td>111.09</td>
</tr>
</tbody>
</table>

Hasil penjumlahan total kebutuhan HK akibat perubahan sistem sadap dari konvensional ke *LFT systems* menunjukkan tidak ada perbedaan yang nyata pada jumlah HK dalam operasionalisasi penerapan *LFT systems*. Kecenderungan rata-rata jumlah HK justru meningkat seiring dengan penurunan frekuensi sistem sadap. Peningkatan kebutuhan HK tersebut terjadi akibat kontribusi HK stimulansia yang meningkat masing-masing 53%, 97%, hingga 172% pada penerapan *LFT systems* d4, d5, dan d6. Arinya berdasarkan data tersebut, kekhatwatan akan menurunnya kesempatan kerja akibat perubahan sistem sadap konvensional ke *LFT systems* tidak terjadi dalam kasus ini. Peningkatan dan penurunan kebutuhan HK di lapangan dapat diterjemahkan dengan peningkatan dan penurunan kebutuhan tenaga kerja.

Jika mengacu pada aspek biaya sebagaimana diuraikan pada subbab sebelumnya maka dapat disimpulkan bahwa dampak penurunan biaya akibat berkurangnya jumlah HK penyadap jauh lebih besar dari pada dampak kenaikan biaya akibat meningkatnya jumlah HK stimulansia. Perlu diketahui bahwa kegiatan stimulansia merupakan kegiatan yang bersifat borongan yang dalam pelaksanaannya diatur sedemikian rupa menggunakan sistem tenaga kerja aih dia. Prestasi kerja kegiatan stimulansia diukur menurut satuan hanc sadap dengan nilai upah yang tergolong kecil. Gambar 12 serta Tabel 15 dan 16 memperlihatkan data hasil analisis jumlah rata-rata HK/ha/tahun penyadap + stimulansia menurut frekuensi sistem sadap.

85
Gambar 12. Rata-rata total kebutuhan HK menurut frekuensi sistem sadap

Gambar 12. Average of total HK requirement by tapping frequency

Tabel 15. Rata-rata HK penyadap + stimulansia menurut frekuensi sistem sadap
Table 15. Average of HK tapper + stimulant by tapping frequency

<table>
<thead>
<tr>
<th>Frekuensi sadap</th>
<th>Kebutuhan total HK/ha/tahun</th>
<th>Rata-rata</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BO-1</td>
<td>BO-2</td>
<td>HO-2.1</td>
</tr>
<tr>
<td>d3</td>
<td>67.26</td>
<td>86.27</td>
<td>109.03</td>
</tr>
<tr>
<td>d4</td>
<td>66.49</td>
<td>79.59</td>
<td>115.71</td>
</tr>
<tr>
<td>d5</td>
<td>70.22</td>
<td>78.98</td>
<td>120.34</td>
</tr>
<tr>
<td>d6</td>
<td>79.26</td>
<td>81.40</td>
<td>147.09</td>
</tr>
</tbody>
</table>

Tabel 16. Hasil uji ANOVA single factor terhadap rata-rata HK penyadap + stimulansia
Table 16. Result of ANOVA single factor test by average of HK tapper + stimulant

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>P-value</th>
<th>F crit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between Groups</td>
<td>1134.557</td>
<td>3</td>
<td>378.1856</td>
<td>0.521137</td>
<td>0.675777</td>
<td>3.490295</td>
</tr>
<tr>
<td>Within Groups</td>
<td>8708.325</td>
<td>12</td>
<td>725.6937</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>9842.882</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Analisis perubahan struktur pendapatan dan biaya penerapan sistem sadap frekuensi rendah.

Berdasarkan hasil observasi terhadap sejumlah alternatif sistem sadap di kebun sampel diperoleh nilai rata-rata produksi/ha/tahun menurut masing-masing frekuensi sistem sadap yang dipilih. Gambar 13., memperlihatkan bahwa produksi kg/ha tanaman karet menurut frekuensi sistem sadap d3, d4, d5, dan d6 masing-masing adalah 1.735 kg/ha, 1.179 kg/ha, 885 kg/ha, dan 644 kg/ha. Hasil uji ANOVA single factor terhadap data produksi kg/ha tersebut menunjukkan adanya perbedaan yang nyata di antara perlakuan frekuensi sistem sadap, dimana nilai P-value sebesar 0,01 lebih kecil dari α = 0,05 yang berarti hipotesis nol ditolak.

Dengan asumsi harga karet alam sebesar Rp 19.471,-/kg maka diperoleh simulasi penerimaan produksi sebagaimana diperlihatkan pada Tabel 19. Simulasi biaya produksi diperhitungkan menurut struktur biaya yang telah diuraikan sebelumnya dan rincianya disajikan pada Tabel 20. Berdasarkan kedua perhitungan tersebut analisis anggaran parsial terhadap

Penerapan LFT systems d4, d5, dan d6 secara finansial berfungsii menurunkan biaya penyadap masing-masing sebesar 25%, 40%, dan 50%. Penurunan biaya penyadap secara teknis dapat berarti menurunkan kebutuhan tenaga kerja penyadap. Penerapan sistem sadap frekuensi rendah lebih bertujuan pada rencana strategis perkebunan karet dalam jangka panjang untuk menyiasati masalah kelangkaan tenaga penyadap terampil sekaligus langkah jangka pendek dalam mempertahankan keuntungan usaha di tengah terbatasnya upaya peningkatan penerimaan perusahaan (Wulandari et al., 2023). Strategi penurunan biaya mencakup tujuan jangka panjang untuk mencapai perusahaan pada posisi yang kompetitif (Pradnyanitasari et al., 2019).

Gambar 13. Grafik potensi produksi menurut frekuensi sistem sadap

Figure 13. Graph of production potential according to tapping system frequency

Tabel 17. Produksi kg/ha/tahun tanaman karet menurut frekuensi sistem sadap

Table 17. Production kg/ha/year of rubber trees by tapping systems frequency

<table>
<thead>
<tr>
<th>Posisi panel</th>
<th>Frkuensi sistem sadap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel position</td>
<td>d3</td>
</tr>
<tr>
<td>BO-1</td>
<td>2.304</td>
</tr>
<tr>
<td>BO-2</td>
<td>1.556</td>
</tr>
<tr>
<td>HO-2.1</td>
<td>1.059</td>
</tr>
<tr>
<td>HO-2.2</td>
<td>2.020</td>
</tr>
<tr>
<td>Rata-rata</td>
<td>$1.735 \pm 346$ a</td>
</tr>
</tbody>
</table>
Tabel 18. Hasil uji ANOVA single factor terhadap rata-rata produksi kg/ha/tahun

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>P-value</th>
<th>F crit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between Groups</td>
<td>2653955</td>
<td>3</td>
<td>884651.6</td>
<td>5.831158</td>
<td>0.010729</td>
<td>3.490295</td>
</tr>
<tr>
<td>Within Groups</td>
<td>1820534</td>
<td>12</td>
<td>151711.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>4474488</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabel 19. Pencetakan produksi menurut frekuensi sistem sadap

<table>
<thead>
<tr>
<th>Sistem sadap</th>
<th>Revenue/ha</th>
<th>BO-1</th>
<th>BO-2</th>
<th>HO-2.1</th>
<th>HO-2.2</th>
<th>Rata-rata</th>
</tr>
</thead>
<tbody>
<tr>
<td>d3</td>
<td>44.862.346</td>
<td>30.296.770</td>
<td>20.619.319</td>
<td>39.334.234</td>
<td>33.778.167</td>
<td></td>
</tr>
<tr>
<td>d5</td>
<td>21.298.683</td>
<td>17.151.146</td>
<td>8.007.765</td>
<td>22.444.683</td>
<td>17.225.569</td>
<td></td>
</tr>
<tr>
<td>d6</td>
<td>19.826.147</td>
<td>12.675.246</td>
<td>6.034.450</td>
<td>11.589.090</td>
<td>12.531.233</td>
<td></td>
</tr>
</tbody>
</table>

Tabel 20. Biaya produksi menurut frekuensi sistem sadap

<table>
<thead>
<tr>
<th>Sistem sadap</th>
<th>Revenue/ha</th>
<th>BO-1</th>
<th>BO-2</th>
<th>HO-2.1</th>
<th>HO-2.2</th>
<th>Rata-rata</th>
</tr>
</thead>
<tbody>
<tr>
<td>d4</td>
<td>18.244.247</td>
<td>18.863.718</td>
<td>20.634.316</td>
<td>18.523.203</td>
<td>19.091.371</td>
<td></td>
</tr>
<tr>
<td>d5</td>
<td>15.207.656</td>
<td>15.641.786</td>
<td>17.150.232</td>
<td>15.579.921</td>
<td>15.894.899</td>
<td></td>
</tr>
</tbody>
</table>

Tabel 21. Analisis anggaran partial perubahan sistem sadap frekuensi rendah

<table>
<thead>
<tr>
<th>Sistem sadap</th>
<th>Revenue/ha</th>
<th>Cost/ha</th>
<th>Net Income</th>
<th>RCR</th>
<th>ΔRevenue/ha</th>
<th>ΔCost/ha</th>
<th>ΔNet Income</th>
</tr>
</thead>
<tbody>
<tr>
<td>d3</td>
<td>33.778.167</td>
<td>24.351.236</td>
<td>9.426.931</td>
<td>1.39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d6</td>
<td>12.531.233</td>
<td>13.892.279</td>
<td>(1.361.046)</td>
<td>0.90</td>
<td>[21.246.934]</td>
<td>(10.458.957)</td>
<td>(10.787.977)</td>
</tr>
</tbody>
</table>

**KESIMPULAN DAN SARAN**

Sistem sadap frekuensi rendah atau Low Frequency Tapping (LFT) Systems diterapkan pada perusahaan perkebunan karet saat ini untuk menghadapi situasi rendahnya harga dan terbatasnya jumlah tenaga penyadap terampil. Penerapannya di lapangan berdampak langsung pada penurunan biaya penyadap akibat berkurangnya hari sadap efektif (HSE) yang diterjemahkan ke dalam hari kerja (HK) penyadap. Tingkat penurunan biaya penyadap untuk masing-masing LFT systems d4, d5, dan d6 yang diuji sebesar 25%, 40%, dan 50%. Berkurangnya HSE di lapangan dikompensasi dengan meningkatnya intensitas stimulansia yang berakibat pada kenaikan biaya aplikasi stimulansia masing-masing sebesar 53%, 97%, dan 172%. Kenaikan biaya stimulansia tersebut terjadi akibat kenaikan HK tenaga stimulansia. Kenaikan HK tenaga stimulansia tidak memberikan dampak yang signifikan terhadap kenaikan total biaya dikarenakan nilai upah per satuan HK stimulansia yang tergolong kecil, sebesar Rp 25.000,-/HK/ancak. Penurunan dan kenaikan HK di lapangan dapat diterjemahkan dalam pengurangan dan penambahan tenaga kerja. Jumlah total kebutuhan HK akibat perubahan sistem sadap konvensional d3 ke LFT systems d4, d5, dan d6 tidak berbeda nyata.
Kekhawatiran akan berkurangnya kesempatan kerja tidak terjadi dalam penelitian ini. Secara finansial penerapan LFT systems d4 dan d5 dalam jangka pendek dapat dilakukan sebagai program penurunan biaya (cost reduction programme) yang dapat membantu perusahaan untuk mempertahankan kondisi finansialnya pada nilai RCR masing-masing sebesar 1,20 dan 1,08. Dalam jangka panjang penerapan LFT systems merupakan langkah strategis perusahaan yang tepat untuk diterapkan sebagai upaya untuk mengantisipasi masalah kelincahan tenaga penyadap terampil dan sekaligus menjaga kondisi perusahaan agar tetap berdaya saing.

**DAFTAR PUSTAKA**


