PEMANFAATAN LIMBAH PHYLON SEBAGAI BAHAN BAKU SOL LUAR SANDAL OUTDOOR

Authors

  • Andri Saputra Politeknik ATK Yogyakarta
  • Adinda Dwi Berliana Politeknik ATK Yogyakarta

DOI:

https://doi.org/10.22302/ppk.wp.v43i2.1019

Keywords:

limban phylon, outsole, sandal outdoor, uji abrasi, uji retak lentur

Abstract

Pertumbuhan industri alas kaki meningkatkan jumlah limbah phylon. Limbah phylon yang tidak diolah dengan baik memberikan dampak buruk bagi lingkungan. Penelitian ini bertujuan untuk mendaur ulang limbah phylon sebagai bahan campuran utama untuk sol luar (outsole) sandal outdoor karena phylon umumnya digunakan pada outsole alas kaki aktivitas outdoor. Limbah phylon dicampur dengan bahan lainnya sesuai formulasi yang telah dirancang menggunakan kneader dan mesin two-roll mill, lalu dicetak menggunakan mesin hot press moulding pada suhu 140-150 oC selama 3 menit. Hasil penelitian menyatakan bahwa limbah phylon dapat didaur ulang menjadi bahan utama untuk pembuatan outsole sandal outdoor. Outsole yang dihasilkan pada berbagai formulasi memiliki permukaan rata dan tidak memiliki kecacatan seperti sobekan dan keretakan. Kompon yang menggunakan limbah phylon 13 phr memberikan kekerasan sebesar 65 Shore A dan indeks abrasi 29,12%, sedangkan kompon yang menggunakan limbah phylon 31 phr memberikan kekerasan sebesar 70 Shore A dan indeks abrasi 46%. Kekerasan dan indeks abrasi outsole mengalami peningkatan seiring bertambahnya bagian limbah phylon dalam kompon karet. Meskipun kekerasan outsole meningkat, namun outsole tersebut tetap tidak retak setelah dilakukan uji retak lentur.

Author Biography

Adinda Dwi Berliana, Politeknik ATK Yogyakarta

Program Studi Pengolahan Karet dan Plastik

References

Adani, N. F. (2016). Eksplorasi Limbah Serbuk EVA (Ethylene Vinyl Acetate) Untuk Mencari Potensi Visual Universitas Telkom. E-Proceeding of Art & Design, 3(3), 1345–1351.

Arguello, J. M., & Santos, A. (2016). Hardness and compression resistance of natural rubber and synthetic rubber mixtures. Journal of Physics: Conference Series, 687(1), 1–4. https://doi.org/10.1088/1742-6596/687/1/012088

Asaro, L., Gratton, M., Seghar, S., & Aït Hocine, N. (2018). Recycling of rubber wastes by devulcanization. Resources, Conservation and Recycling, 133, 250–262. https://doi.org/10.1016/j.resconrec.2018.02.016

BSN. (2017). Sol Karet Cetak (SNI SNI 778:2017). Badan Standardisasi Nasional.

Çopuroglu, M., & Sen, M. (2005). A comparative study of UV aging characteristics of poly(ethylene?co?vinyl acetate) and poly(ethylene?co?vinyl acetate)/carbon black mixture. Polymers for Advanced Technologies, 16(1), 61–66. https://doi.org/10.1002/pat.538

Daud, D. (2015). Caolin as filler substitute in rubber compounding: The effects of size and quantity towards pyscho-mechanic properties. Jurnal Dinamika Penelitian Industri 26(1). https://doi.org/10.28959/jdpi.v26i1.701

Faga, M., Duraccio, D., Di Maro, M., Pedraza, R., Bartoli, M., d’Ayala, G., Torsello, D., Ghigo, G., & Malucelli, G. (2022). Ethylene-Vinyl Acetate (EVA) Containing Waste Hemp-Derived Biochar Fibers: Mechanical, Electrical, Thermal and Tribological Behavior. Polymers, 14(19), 4171. https://doi.org/10.3390/polym14194171

ISO. (2010). Rubber, vulcanized or thermoplastic Determination of abrasion resistance using a rotating cylindrical drum device (Version Third) [Standard]. International Organization for Standardization.

Jofre-Reche, J. A., & Martín-Martínez, J. M. (2013). Selective surface modification of ethylene-vinyl acetate and ethylene polymer blend by UV–ozone treatment. International Journal of Adhesion and Adhesives, 43, 42–53. https://doi.org/10.1016/j.ijadhadh.2013.01.010

Júnior, C. Z. P., Mendonca, A. V, Fim, F. C., & Silva, L. B. (2022). Recycling EVA Waste: An Opportunity for the Footwear Industry-Rheological Properties of EVA Waste Composites Using Torque Rheometry. Journal of Polymers and the Environment, 30(5), 1–10. https://doi.org/10.1007/s10924-021-02332-x

Lopes, D., Ferreira, M. J., Russo, R., & Dias, J. M. (2015). Natural and synthetic rubber/waste – Ethylene-Vinyl Acetate composites for sustainable application in the footwear industry. Journal of Cleaner Production, 92, 230–236. https://doi.org/10.1016/j.jclepro.2014.12.063

Maiti, M., Jasra, R. V., Kusum, S. K., & Chaki, T. K. (2012). Microcellular foam from ethylene vinyl acetate/polybutadiene rubber (EVA/BR) based thermoplastic elastomers for footwear applications. Industrial & Engineering Chemistry Research, 51(32), 10607–10612. https://doi.org/10.1021/ie300396m

Mészáros, L., Tábi, T., Kovács, J. G., & Bárány, T. (2008). The effect of EVA content on the processing parameters and the mechanical properties of LDPE/ground tire rubber blends. Polymer Engineering & Science, 48(5), 868–874. https://doi.org/10.1002/pen.21022

Moreira, V. X., & Soares, B. G. (2002). Study of utilization of ground EVA waste as filler in NBR vulcanizates. Polymers and Polymer Composites, 10(5), 381–390. https://doi.org/10.1177/096739110201000505

Nakason, C., Kaewsakul, W., & Kaesaman, A. (2012). Thermoplastic natural rubbers based on blending of ethylene-vinyl acetate copolymer with different types of natural rubber. Journal of Elastomers & Plastics, 44(1), 89–111. https://doi.org/10.1177/0095244311413441

Nuraini, E. (2017). Sifat termal dan ketahanan bengkuk material sol sepatu pantofel laki-laki dewasa. PROSIDING SENTRINOV, TAHUN 2017, 3, 150–158.

Nurhajati, D. W., Lestari, U. R., & Priambodo, G. (2021). Characterization of ethylene–vinyl acetate (EVA)/modified starch expanded compounds for outsole material. Majalah Kulit, Karet, Dan Plastik, 37(1), 41–50. https://doi.org/10.20543/mkkp.v37i1.6916

Paiva Junior, C. Z., Peruchi, R. S., Fim, F. D. C., Soares, W. D. O. S., & Da Silva, L. B. (2021). Performance of ethylene vinyl acetate waste (EVA-w) when incorporated into expanded EVA foam for footwear. Journal of Cleaner Production, 317, 128352. https://doi.org/10.1016/j.jclepro.2021.128352

Posadas, P., Fernández?Torres, A., Chamorro, C., Mora?Barrantes, I., Rodríguez, A., González, L., & Valentín, J. L. (2013). Study on peroxide vulcanization thermodynamics of ethylene–vinyl acetate copolymer rubber using 2,2,6,6,?tetramethylpiperidinyloxyl nitroxide. Polymer International, 62(6), 909–918. https://doi.org/10.1002/pi.4376

Prasetya, H. A. (2014). Penentuan umur simpan kompon karet pegangan setang kendaraan bermotor dengan bahan pengisi abu sekam padi. Jurnal Riset Industri, 8(1), 147–157. http://ejournal.kemenperin.go.id/jriXX/article/view/149

Pyo, K., Choi, J., Lee, J., & Park, C. (2013). Improvement of frictional property of BR/CIIR composite rubber for shoes outsole. Polymer Korea, 37(3), 255–261. https://doi.org/10.7317/pk.2013.37.3.255

Roberto, P., Lima, L., Leite, M. B., Quinteiro, E., & Santiago, R. (2010). Recycled Lightweight Concrete Made From Footwear Industry Waste and CDW. Waste Management, 30(6), 1107–1113. https://doi.org/10.1016/j.wasman.2010.02.007

Setiyana, B. (2019). Identifikasi sifat tribologi dari karet vulkanisir dengan menggunakan metode uji pin on disc. Prosiding Seminar Nasional Sains dan Teknologi, 41–46. https://doi.org/10.36499/psnst.v1i1.2818

Suciati, A. (2016). Eksplorasi Limbah EVA Industri Sepatu (Potensi Visual) ( Studi Kasus: Industri Sepatu di Daerah Bandung, Jawa Barat ). E-Proceeding of Art & Design, 3(3), 1426–1432.

Wu, W., Narayana Kurup, S., Ellingford, C., Li, J., & Wan, C. (2020). Coupling dynamic covalent bonds and ionic crosslinking network to promote shape memory properties of ethylene-vinyl acetate copolymers. Polymers, 12(4), 1–13. https://doi.org/10.3390/polym12040983

Downloads

Published

2024-12-23

How to Cite

Saputra, A., & Berliana, A. D. (2024). PEMANFAATAN LIMBAH PHYLON SEBAGAI BAHAN BAKU SOL LUAR SANDAL OUTDOOR. Warta Perkaretan, 43(2), 67–78. https://doi.org/10.22302/ppk.wp.v43i2.1019

Issue

Section

Original Research Article