PENGARUH JENIS PELARUT TERHADAP MODIFIKASI SELULOSA BAKTERI DENGAN SILANE Si69 SEBAGAI FILLER KARET ALAM

Authors

  • Mili Purbaya

DOI:

https://doi.org/10.22302/ppk.wp.v44i1.1110

Keywords:

filler ramah lingkungan, kompatibilitas selulosa-karet, silane coupling agent (Si69), FTIR, XRF

Abstract

Karet alam banyak digunakan dalam berbagai industri, namun membutuhkan filler untuk meningkatkan sifat mekanik dan ketahanannya. Filler konvensional seperti karbon hitam dan silika memiliki kelemahan terkait dampak lingkungan dan berat jenis yang tinggi, sehingga diperlukan alternatif yang lebih ramah lingkungan. Selulosa bakteri merupakan kandidat potensial berkat kemurnian tinggi, kekuatan mekanik yang baik, dan sifat biodegradabilitasnya. Namun, perbedaan polaritas antara selulosa bakteri yang hidrofilik dan karet alam yang hidrofobik menjadi tantangan dalam aplikasinya, sehingga diperlukan modifikasi permukaan. Penelitian ini bertujuan untuk mengeksplorasi modifikasi selulosa bakteri menggunakan silane coupling agent Si69 dengan dua jenis pelarut, yaitu N,N-dimethylacetamide (DMAc) dan etanol, serta mengevaluasi efek variasi rasio selulosa bakteri terhadap silane (1/2, 1/4, 1/6, dan 1/8). Proses modifikasi dilakukan dengan mereaksikan selulosa bakteri dan silane dalam pelarut yang dipilih, kemudian hasilnya dikarakterisasi menggunakan Fourier Transform Infrared Spectroscopy (FTIR) dan X-Ray Fluorescence (XRF). Hasil FTIR menunjukkan kemunculan puncak baru pada 1242 cm⁻¹ (gugus Si–O–Si) dan 688 cm⁻¹ (gugus S–S atau C–S), sedangkan analisis XRF mengkonfirmasi keberadaan unsur silikon (Si) dan sulfur (S) pada selulosa bakteri yang telah dimodifikasi. Modifikasi dengan pelarut DMAc menghasilkan kandungan silikon dan sulfur yang lebih tinggi dibandingkan etanol, menunjukkan efektivitas modifikasi yang lebih baik. Formula optimum diperoleh pada rasio 1/8 BC/Si69 (DMAc). Studi ini memberikan dasar untuk pengembangan filler berbasis selulosa bakteri yang lebih kompatibel untuk aplikasi karet karet.

References

Abdallah Khalaf, E. S. (2023). A comparative study for the main properties of silica and carbon black Filled bagasse-styrene butadiene rubber composites. Polymers and Polymer Composites, 31, 09673911231171035. doi:10.1177/09673911231171035

Abdelmouleh, M., Boufi, S., ben Salah, A., Belgacem, M. N., & Gandini, A. (2002). Interaction of Silane Coupling Agents with Cellulose. Langmuir, 18(8), 3203-3208. doi:10.1021/la011657g

Agustin, Y. E., & Padmawijaya, K. S. (2018). Effect of Acetic Acid and Ethanol as Additives on Bacterial Cellulose Production by Acetobacter xylinum. IOP Conference Series: Earth and Environmental Science, 209(1), 012045. doi:10.1088/1755-1315/209/1/012045

Bindu Sharmila, T. K., Julie Chandra, C. S., Sasi., S., & Arundhathi, C. K. (2024). Modification of Cellulose. In S. Thomas, M. Hosur, D. Pasquini, & C. Jose Chirayil (Eds.), Handbook of Biomass (pp. 535-571). Singapore: Springer Nature Singapore.

Çakar, F., Özer, I., Aytekin, A. Ö., & ?ahin, F. (2014). Improvement production of bacterial cellulose by semi-continuous process in molasses medium. Carbohydrate Polymers, 106, 7-13. doi:https://doi.org/10.1016/j.carbpol.2014.01.103

Fuller, M. E., Andaya, C., & McClay, K. (2018). Evaluation of ATR-FTIR for analysis of bacterial cellulose impurities. Journal of Microbiological Methods, 144, 145-151. doi:https://doi.org/10.1016/j.mimet.2017.10.017

Hamimed, S., Abdeljelil, N., Landoulsi, A., Chatti, A., Aljabali, A. A. A., & Barhoum, A. (2020). Bacterial Cellulose Nanofibers. In A. Barhoum (Ed.), Handbook of Nanocelluloses: Classification, Properties, Fabrication, and Emerging Applications (pp. 1-38). Cham: Springer International Publishing.

Ismail, H., Shuhelmy, S., & Edyham, M. R. (2002). The effects of a silane coupling agent on curing characteristics and mechanical properties of bamboo fibre filled natural rubber composites. European Polymer Journal, 38(1), 39-47. doi:https://doi.org/10.1016/S0014-3057(01)00113-6

Jantachum, P., Khumpaitool, B., & Utara, S. (2023). Effect of silane coupling agent and cellulose nanocrystals loading on the properties of acrylonitrile butadiene rubber/natural rubber nanocomposites. Industrial Crops and Products, 195, 116407. doi:https://doi.org/10.1016/j.indcrop.2023.116407

Jiang, H., Zheng, Z., Li, Z., & Wang, X. (2006). Effects of Temperature and Solvent on the Hydrolysis of Alkoxysilane under Alkaline Conditions. Industrial & Engineering Chemistry Research, 45(25), 8617-8622. doi:10.1021/ie0607550

Kahawita, H., Samarasekara, A., Amarasinghe, D. A. S., & Karunanayake, L. (2020). Nanofibrillated Cellulose Reinforced Polypropylene Composites: Influence Of Silane (Si-69) Surface Modification. Cellulose Chemistry and Technology, 54, 789-797. doi:10.35812/CelluloseChemTechnol.2020.54.78

Klemm, D., Kramer, F., Moritz, S., Lindström, T., Ankerfors, M., Gray, D., & Dorris, A. (2011). Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed Engl, 50(24), 5438-5466. doi:10.1002/anie.201001273

Kono, H., Uno, T., Tsujisaki, H., Matsushima, T., & Tajima, K. (2020). Nanofibrillated Bacterial Cellulose Modified with (3-Aminopropyl)trimethoxysilane under Aqueous Conditions: Applications to Poly(methyl methacrylate) Fiber-Reinforced Nanocomposites. ACS Omega, 5(45), 29561-29569. doi:10.1021/acsomega.0c04533

Lahiri, D., Nag, M., Dutta, B., Dey, A., Sarkar, T., Pati, S., . . . Ray, R. R. (2021). Bacterial Cellulose: Production, Characterization, and Application as Antimicrobial Agent. Int J Mol Sci, 22(23). doi:10.3390/ijms222312984

Li, X. D., Lan, A., Tang, J. W., Zhang, Y., Gibril, M. E., & Yu, M. H. (2015). Effects of Polar Aprotic Solvents on Dissolving Cellulose in Ionic Liquid. Advanced Materials Research, 1073-1076, 282-285. doi:10.4028/www.scientific.net/AMR.1073-1076.282

Mishra, S., Singh, P. K., Pattnaik, R., Kumar, S., Ojha, S. K., Srichandan, H., . . . Sarangi, P. K. (2022). Biochemistry, Synthesis, and Applications of Bacterial Cellulose: A Review. Frontiers in Bioengineering and Biotechnology, Volume 10 - 2022. doi:10.3389/fbioe.2022.780409

Moon, R. J., Martini, A., Nairn, J., Simonsen, J., & Youngblood, J. (2011). Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews, 40(7), 3941-3994. doi:10.1039/C0CS00108B

Murakami, K., Iio, S., Ikeda, Y., Ito, H., Tosaka, M., & Kohjiya, S. (2003). Effect of silane-coupling agent on natural rubber filled with silica generated in situ. Journal of Materials Science, 38(7), 1447-1455. doi:10.1023/A:1022908211748

Nawaz, H., Zhang, J., Tian, W., Wu, J., & Zhang, J. (2019). Chemical Modification of Cellulose in Solvents for Functional Materials. In B. Han & T. Wu (Eds.), Green Chemistry and Chemical Engineering (pp. 427-460). New York, NY: Springer New York.

Oksman, K., Mathew, A. P., Bondeson, D., & Kvien, I. (2006). Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Composites Science and Technology, 66(15), 2776-2784. doi:https://doi.org/10.1016/j.compscitech.2006.03.002

Pogorelova, N., Rogachev, E., Digel, I., Chernigova, S., & Nardin, D. (2020). Bacterial Cellulose Nanocomposites: Morphology and Mechanical Properties. Materials (Basel), 13(12). doi:10.3390/ma13122849

Rahmayetty, Meri, y., Muhamad, T., & Nufus, K. (2022, 2022/12/24). The Effect of Acetobacter xylinum Concentration to Bacterial Cellulose Production Using Waste Water of Palm Flour Industry as Fermentation Medium. Paper presented at the Proceedings of the 2nd International Conference for Smart Agriculture, Food, and Environment (ICSAFE 2021).

Raut, M. P., Asare, E., Syed Mohamed, S. M. D., Amadi, E. N., & Roy, I. (2023). Bacterial Cellulose-Based Blends and Composites: Versatile Biomaterials for Tissue Engineering Applications. International Journal of Molecular Sciences, 24(2), 986. Retrieved from https://www.mdpi.com/1422-0067/24/2/986

Sae-oui, P., Sirisinha, C., Hatthapanit, K., & Thepsuwan, U. (2005). Comparison of reinforcing efficiency between Si-69 and Si-264 in an efficient vulcanization system. Polymer Testing, 24(4), 439-446. doi:https://doi.org/10.1016/j.polymertesting.2005.01.008

Setiawan, A., Anggraini, F. D. M., Ramadani, T. A., Cahyono, L., & Rizal., M. C. (2021). Pemanfaatan Jerami Padi Sebagai Bioplastik Dengan Menggunakan Metode Perlakuan Pelarut Organik. Metana: Media Komunikasi Rekayasa Proses dan Teknologi Tepat Guna 17(2), 69-80. doi: 10.14710/metana.v17i2.42254

Spahr, M. E., & Rothon, R. (2017). Carbon Black as a Polymer Filler. In R. Rothon (Ed.), Fillers for Polymer Applications (pp. 261-291). Cham: Springer International Publishing.

Taokaew, S., Ofuchi, M., & Kobayashi, T. (2019). Size Distribution and Characteristics of Chitin Microgels Prepared via Emulsified Reverse-Micelles. Materials, 12(7), 1160. Retrieved from https://www.mdpi.com/1996-1944/12/7/1160

Thomas, S. K., Parameswaranpillai, J., Krishnasamy, S., Begum, P. M. S., Nandi, D., Siengchin, S., . . . Sienkiewicz, N. (2021). A comprehensive review on cellulose, chitin, and starch as fillers in natural rubber biocomposites. Carbohydrate Polymer Technologies and Applications, 2, 100095. doi:https://doi.org/10.1016/j.carpta.2021.100095

Umamaheswari, S., S. Malkar Oli, & Naveena., K. (2017). FTIR Spectral and Microarchitectural Analysis of Cellulose Produced by Lactococcus lactis Under Agitated Condition. Journal of Pure and Applied Microbiology, 11(4), 1965-1971. doi:doi: 10.22207/JPAM.11.4.38

Wu, W., & Chen, F. (2020). Interfacial Modification of Corn Stalk Cellulose Reinforced Used Rubber Powder Composites Treated with Coupling Agent. Journal of Renewable Materials, 8(8), 905--913. Retrieved from http://www.techscience.com/jrm/v8n8/39497

Zhong, C. (2020). Industrial-Scale Production and Applications of Bacterial Cellulose. Frontiers in Bioengineering and Biotechnology, Volume 8 - 2020. doi:10.3389/fbioe.2020.605374

Downloads

Published

2025-06-27

How to Cite

Purbaya, M. (2025). PENGARUH JENIS PELARUT TERHADAP MODIFIKASI SELULOSA BAKTERI DENGAN SILANE Si69 SEBAGAI FILLER KARET ALAM. Warta Perkaretan, 44(1), 19–30. https://doi.org/10.22302/ppk.wp.v44i1.1110

Issue

Section

Original Research Article