PEMBUATAN CRUMB RUBBER DARI LIMBAH KARET BAN-DALAM MENGGUNAKAN KEROSIN DAN MESIN GILING

Authors

  • Andri Saputra Politeknik ATK Yogyakarta
  • Septiyana Windiastuti
  • Mertza Fitra Agustian
  • Danang Cahya Eka Saputra
  • Putra Oktavianto
  • Dennis Farina Nury
  • Aldillah Herlambang

DOI:

https://doi.org/10.22302/ppk.wp.v44i2.1121

Keywords:

ban-dalam, crumb rubber, kerosin, limbah karet, mesin giling

Abstract

Jumlah produksi ban di Indonesia mengalami peningkatan setiap tahunnya yang memberikan pengaruh terhadap peningkatan jumlah limbah ban-dalam. Pemanfaatan limbah ban-dalam sangat sulit dilakukan karena tidak dapat terurai secara alami bahkan setelah jangka waktu yang lama. Penelitian ini bertujuan mengembangkan metode kombinasi kimia dan mekanik dalam produksi crumb rubber dari limbah ban-dalam, guna menghasilkan alternatif daur ulang yang efisien dan dapat diterapkan pada skala industri kecil. Limbah ban-dalam dipotong menjadi spesimen uji, kemudian direndam dalam kerosin pada berbagai variasi waktu dan dikeringkan hingga berat konstan. Sifat mekanis (kekuatan tarik dan perpanjangan putus) diuji menggunakan Universal Testing Machine (UTM). Hasil penelitian diketahui bahwa semakin lama perendaman menggunakan kerosin maka semakin menurunkan sifat mekanis spesimen karet uji. Perendaman dalam larutan kerosin selama 96 jam menurunkan kekuatan tarik (93,7%) dan perpanjangan putus (91%) spesimen karet uji secara maksimal. Crumb rubber yang diperoleh dari penelitian ini berukuran berkisar 0,3-0,5 cm. Analisis spektra FTIR mengonfirmasi bahwa produk crumb rubber yang dihasilkan bebas dari kerosin.

References

Aiello, M. A., & Leuzzi, F. (2010). Waste tyre rubberized concrete: Properties at fresh and hardened state. Waste Management (New York, N.Y.), 30(8–9), 1696–1704. https://doi.org/10.1016/j.wasman.2010.02.005

Akinlabi, A. K., & Okieimen, F. E. (2011). Investigation of the degradation properties of low molecular weight natural rubber blends in oven, oxygen, ozone, water, and some organic solvents. Journal of Applied Polymer Science, 121(1), 78–85. https://doi.org/10.1002/app.33286

Araujo-Morera, J., Hernández Santana, M., Verdejo, R., & López-Manchado, M. A. (2019). Giving a Second Opportunity to Tire Waste: An Alternative Path for the Development of Sustainable Self-Healing Styrene–Butadiene Rubber Compounds Overcoming the Magic Triangle of Tires. Polymers, 11(12), 2122. https://doi.org/10.3390/polym11122122

Banar, M., Aky?ld?z, V., Özkan, A., Çokaygil, Z., & Onay, Ö. (2012). Characterization of pyrolytic oil obtained from pyrolysis of TDF (Tire Derived Fuel). Energy Conversion and Management, 62, 22–30. https://doi.org/10.1016/j.enconman.2012.03.019

Brunier, E., & Antonini, G. (1984). Experimental and Numerical Description of the Diffusion of a Liquid in a Swelling Elastomer. In C. A. Brebbia & G. A. Keramidas (Eds.), Computational Methods and Experimental Measurements (pp. 623–632). Springer Berlin Heidelberg.

BSN. (2017). Sol Karet Cetak (SNI SNI 778:2017). Badan Standardisasi Nasional.

Czajczy?ska, D., Krzy?y?ska, R., Jouhara, H., & Spencer, N. (2017). Use of pyrolytic gas from waste tire as a fuel: A review. Energy, 134, 1121–1131. https://api.semanticscholar.org/CorpusID:113623427

De, S. K., Isayev, A., & Khait, K. (2005). Rubber Recycling (1st ed.) (Vol. 1). CRC Press.

Demmel, B., Förster, T., Eibl, S., Johlitz, M., & Lion, A. (2022). Long-Term Storage of Aged NBR in Kerosene in Consideration of Long Material Service Life. In H. Altenbach, M. Johlitz, M. Merkel, & A. Öchsner (Eds.), Lectures Notes on Advanced Structured Materials (pp. 229–240). Springer International Publishing. https://doi.org/10.1007/978-3-031-11589-9_16

Fan, J. J., Li, C. G., Liu, B. T., Sun, C. Y., & Jia, X. H. (2022). Study on the Change Behavior of Fluorosilicone Rubber in RP-3 Kerosene. Materials Science Forum, 1061, 45–50. https://doi.org/10.4028/p-zg7ejj

Fazli, A., & Rodrigue, D. (2020). Recycling Waste Tires into Ground Tire Rubber (GTR)/Rubber Compounds: A Review. Journal of Composites Science, 4(3), 103. https://doi.org/10.3390/jcs4030103

Ge, D., Yan, K., You, Z., & Xu, H. (2016). Modification mechanism of asphalt binder with waste tire rubber and recycled polyethylene. Construction and Building Materials, 126, 66–76. https://doi.org/10.1016/j.conbuildmat.2016.09.014

Geyser, M., & McGill, W. J. (1996). Thiuram-accelerated sulfur vulcanization. III. The formation of crosslinks. Journal of Applied Polymer Science, 60(3), 439–447. https://doi.org/10.1002/(SICI)1097-4628(19960418)60:3<439::AID-APP18>3.0.CO;2-Y

Kakroodi, A. R., & Rodrigue, D. (2013). Highly filled thermoplastic elastomers from ground tire rubber, maleated polyethylene and high density polyethylene. Plastics, Rubber and Composites, 42(3), 115–122. https://doi.org/10.1179/1743289812Y.0000000042

Khan, S. R., Zeeshan, M., & Masood, A. (2020). Enhancement of hydrocarbons production through co-pyrolysis of acid-treated biomass and waste tire in a fixed bed reactor. Waste Management, 106, 21–31. https://doi.org/10.1016/j.wasman.2020.03.010

Kikuchi, T., & Ohtake, Y. (2006). The Analysis of Additives in Rubber Products. The Journal of the Society of Rubber Industry, Japan, 79(6), 335–341. https://doi.org/10.2324/gomu.79.335

Kumar, N., Singh, K. P., Giri, A., & Singh, S. P. (2022). Transport mechanism and diffusion kinetics of kerosene through polynorbornene rubber/natural rubber blends. Polymer Bulletin, 79(7), 5305–5325. https://doi.org/10.1007/s00289-021-03770-2

Lapkovskis, V., Mironovs, V., Kasperovich, A., Myadelets, V., & Goljandin, D. (2020). Crumb Rubber as a Secondary Raw Material from Waste Rubber: A Short Review of End-Of-Life Mechanical Processing Methods. Recycling, 5(4), 32–0. https://doi.org/10.3390/recycling5040032

Lopatin, B. V., Vinokurov, V. G., Lopatina, N. B., & Berdyugin, V. A. (1991). Identification of absorption bands corresponding to C-C1 stretching vibrations in the IR spectra of organic compounds. Journal of Applied Spectroscopy, 55(3), 863–866. https://doi.org/10.1007/BF00662411

Mucha, M., & Mucha, J. (2022). Heterogeneous polymers degradation – microplastic. Polimery, 67(7–8), 293–297. https://doi.org/10.14314/polimery.2022.7.1

Mukti, A. C., Prasetya, R. D., & Suminto, S. (2023). Aplikasi Limbah Ban Dalam Pada Produk Skateboard Carrier. Idealog: Ide dan Dialog Desain Indonesia, 8(1), 124–132. https://doi.org/10.25124/idealog.v8i1.4660

Musto, P., Larobina, D., Cotugno, S., Straffi, P., Florio, G. D., & Mensitieri, G. (2013). Confocal Raman imaging, FTIR spectroscopy and kinetic modelling of the zinc oxide/stearic acid reaction in a vulcanizing rubber. Polymer, 54(2), 685–693. https://doi.org/10.1016/j.polymer.2012.12.021

Randová, A., & Bartovská, L. (2018). Chapter 4—Fundamentals and Measurement Techniques for Solvent Transport in Polymers. In S. Thomas, R. Wilson, A. K. S., & S. C. George (Eds.), Transport Properties of Polymeric Membranes (pp. 51–70). Elsevier. https://doi.org/10.1016/B978-0-12-809884-4.00004-5

Shu, X., & Huang, B. (2014). Recycling of waste tire rubber in asphalt and portland cement concrete: An overview. 1. Special Issue of KIFA-6 2. Utilization of Crumb Rubber in Asphalt Mixtures, 67, 217–224. https://doi.org/10.1016/j.conbuildmat.2013.11.027

Smith, B. C. (2022). The Infrared Spectra of Polymers IV: Rubbers. Spectroscopy, 37(1), 8–12. https://doi.org/10.56530/spectroscopy.mz6968v1

Supriyanto, S., Ismanto, I., & Suwito, N. (2019). Zeolit Alam Sebagai Katalis Pyrolisis Limbah Ban Bekas Menjadi Bahan Bakar Cair. Automotive Experiences, 2(1), 15–21. https://doi.org/10.31603/ae.v2i1.2377

Thomas, B. S., Gupta, R. C., & John Panicker, V. (2015). Experimental and modelling studies on high strength concrete containing waste tire rubber. Sustainable Cities and Society, 19, 68–73. https://doi.org/10.1016/j.scs.2015.07.013

Torretta, V., Rada, E. C., Ragazzi, M., Trulli, E., Istrate, I. A., & Cioca, L. I. (2015). Treatment and disposal of tyres: Two EU approaches. A review. Urban Mining, 45, 152–160. https://doi.org/10.1016/j.wasman.2015.04.018

Wang, Y.-H., Chen, Y.-K., & Rodrigue, D. (2018). Production of Thermoplastic Elastomers Based on Recycled PE and Ground Tire Rubber: Morphology, Mechanical Properties and Effect of Compatibilizer Addition. International Polymer Processing, 33(4), 525–534. https://doi.org/doi:10.3139/217.3544

Wijaya, H. S., & Evangelino, E. D. C. (2021). Pengaruh Penambahan Limbah Ban Bekas Terhadap Kekuatan Beton. Jurnal Qua Teknika, 11(1), 10–17. https://doi.org/10.35457/quateknika.v11i1.1405

Yung, W. H., Yung, L. C., & Hua, L. H. (2013). A Study of The Durability Properties of Waste Tire Rubber Applied To Self-Compacting Concrete. Construction and Building Materials, 41, 665–672. https://doi.org/10.1016/j.conbuildmat.2012.11.019

Downloads

Published

2025-12-31

How to Cite

Saputra, A., Windiastuti, S. ., Agustian, M. F. ., Saputra, D. C. E. ., Oktavianto, P. ., Nury, D. F. ., & Herlambang, A. . (2025). PEMBUATAN CRUMB RUBBER DARI LIMBAH KARET BAN-DALAM MENGGUNAKAN KEROSIN DAN MESIN GILING. Warta Perkaretan, 44(2), 129–140. https://doi.org/10.22302/ppk.wp.v44i2.1121

Issue

Section

Original Research Article