POTENSI IRADIASI ELEKTRON BEAM DALAM VULKANISASI KARET ALAM: SOLUSI RAMAH LINGKUNGAN UNTUK INDUSTRI KARET
DOI:
https://doi.org/10.22302/ppk.wp.v44i2.1138Keywords:
vulkanisasi, karet alam, elektron beam, ikatan silang, alergi protein, sensitizerAbstract
Karet alam merupakan material polimer yang banyak digunakan dalam berbagai industri karena sifat mekaniknya yang unggul, seperti elastisitas dan kekuatan tarik yang tinggi. Namun, material ini memiliki kelemahan, termasuk ketergantungan pada suhu, kandungan protein alergen, dan dampak lingkungan dari proses vulkanisasi konvensional. Metode vulkanisasi konvensional berbasis sulfur dan akselerator dapat menghasilkan senyawa berbahaya, seperti N-nitrosamin, yang memiliki potensi risiko bagi kesehatan dan lingkungan. Alternatif yang lebih ramah lingkungan adalah vulkanisasi menggunakan radiasi, khususnya dengan teknologi elektron beam. Teknologi ini memungkinkan pembentukan ikatan silang tanpa memerlukan bahan kimia tambahan, sehingga mengurangi emisi polutan, meningkatkan ketahanan termal, dan menurunkan kandungan protein dalam karet alam. Vulkanisasi berbasis radiasi telah terbukti meningkatkan sifat mekanik karet tanpa perlu penggunaan sulfur atau bahan kimia dalam jumlah besar. Meskipun radiasi sinar gamma dan elektron beam dapat membentuk ikatan silang dalam karet, dosis yang diperlukan cukup tinggi, sehingga efisiensi proses perlu ditingkatkan. Berbagai pendekatan telah dikembangkan, termasuk kombinasi radiasi dengan gelombang mikro serta penggunaan sensitizer untuk menurunkan dosis radiasi yang diperlukan. Namun, pemilihan sensitizer harus mempertimbangkan aspek keamanan dan dampak lingkungan. Kajian ini membahas mekanisme interaksi elektron beam dengan polimer, pembentukan ikatan silang, efektivitas elektron beam dalam mengurangi kandungan protein lateks karet alam, serta evaluasi vulkanisasi dengan dan tanpa sensitizer. Dengan perkembangan teknologi dan meningkatkan kesadaran terhadap lingkungan, vulkanisasi elektron beam memiliki potensi besar dalam mengatasi tantangan industri karet alam saat ini, menawarkan solusi yang lebih aman dan berkelanjutan dibandingkan metode konvensional.
References
Akhtar, F., Makuuchi, K., & Yoshii, F. (1996). Radiation vulcanization of natural rubber latex (NRL) using low energy electron beam accelerator. Proceedings of the Second International Symposium on RVNRL (Radiation Vulcanisation of Natural Rubber Latex), Malaysia.
Chen, H.-l., Li, T., Xing, K., Li, K.-l., Zhang, M.-d., & Li, Q.-l. (2017). Experimental investigation of technological conditions and temperature distribution in rubber material during microwave vulcanization process. Journal of Thermal Analysis and Calorimetry, 130(3), 2079-2091. https://doi.org/10.1007/s10973-017-6601-0
Chirinos, H., Yoshii, F., Makuuchi, K., & Lugao, A. (2003). Radiation vulcanization of natural rubber latex using 250 keV electron beam machine. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 208, 256-259. https://doi.org/https://doi.org/10.1016/S0168-583X(03)01114-5
Chong, E. L., Ahmad, I., Dahlan, H. M., & Abdullah, I. (2010). Reinforcement of natural rubber/high density polyethylene blends with electron beam irradiated liquid natural rubber-coated rice husk. Radiation Physics and Chemistry, 79(8), 906-911. https://doi.org/https://doi.org/10.1016/j.radphyschem.2010.02.011
Craciun, G., Manaila, E., & Stelescu, M. D. (2016). New elastomeric materials based on natural rubber obtained by electron beam irradiation for food and pharmaceutical use. Materials, 9(12), 999. https://www.mdpi.com/1996-1944/9/12/999
Drobny, J. G. (2013). Fundamentals of Radiation Chemistry and Physics. In J. G. Drobny (Ed.), Ionizing Radiation and Polymers (pp. 11-26). William Andrew Publishing. https://doi.org/https://doi.org/10.1016/B978-1-4557-7881-2.00002-X
Hansupalak, N., Srisuk, S., Wiroonpochit, P., & Chisti, Y. (2016). Sulfur-free prevulcanization of natural rubber latex by ultraviolet irradiation. Industrial & Engineering Chemistry Research, 55(14), 3974-3981. https://doi.org/10.1021/acs.iecr.6b00076
Haque, M. D. E., Makuuchi, K., Mitomo, H., Yoshii, F., & Ikeda, K. (2005). A new trend in radiation vulcanization of natural rubber latex with a low energy electron beam. Polymer Journal, 37(5), 333-339. https://doi.org/10.1295/polymj.37.333
Haque, M. E., Dafader, N. C., Akhtar, F., & Ahmad, M. U. (1996). Radiation dose required for the vulcanization of natural rubber latex. Radiation Physics and Chemistry, 48(4), 505-510. https://doi.org/https://doi.org/10.1016/0969-806X(96)00002-3
Ibrahim, S., Badri, K., Ratnam, C. T., & Ali, N. H. M. (2018). Enhancing mechanical properties of prevulcanized natural rubber latex via hybrid radiation and peroxidation vulcanizations at various irradiation doses. Radiation Effects and Defects in Solids, 173(5-6), 427-434. https://doi.org/10.1080/10420150.2018.1462366
Jayasuriya, M. M., Makuuchi, K., & Yoshi, F. (2001). Radiation vulcanization of natural rubber latex using TMPTMA and PEA. European Polymer Journal, 37(1), 93-98. https://doi.org/https://doi.org/10.1016/S0014-3057(00)00091-4
Jönsson, L. S., Lindh, C. H., Bergendorf, U., Axmon, A., Littorin, M., & Jönsson, B. A. (2009). N-nitrosamines in the southern Swedish rubber industries – exposure, health effects, and immunologic markers. Scandinavian Journal of Work, Environment & Health(3), 203-211. https://doi.org/10.5271/sjweh.1323
Kruželák, J., Kvasni?áková, A., Hložeková, K., Gregorová, J., & Džuganová, M. (2022). Influence of mixed sulfur and peroxide curing systems on cross-linking and properties of rubber compounds based on EPDM. Macromolecular Symposia, 404(1), 2100395. https://doi.org/https://doi.org/10.1002/masy.202100395
Kruželák, J., Sýkora, R., & Hudec, I. (2016). Sulphur and peroxide vulcanisation of rubber compounds – overview. Chemical Papers, 70(12), 1533-1555. https://doi.org/doi:10.1515/chempap-2016-0093
Makuuchi, K., & Hagiwara, M. (1984). Radiation vulcanization of natural rubber latex with polyfunctional monomers. Journal of Applied Polymer Science, 29(3), 965-976. https://doi.org/https://doi.org/10.1002/app.1984.070290324
Makuuchi, K., & Tsushima, K. (1988). Radiation vulcanization of natural rubber latex with monofunctional acrylic monomers. Nippon Gomu Kyokaishi, 61(7), 478-482.
Manaila, E., Craciun, G., Stelescu, M.-D., Ighigeanu, D., & Ficai, M. (2014). Radiation vulcanization of natural rubber with polyfunctional monomers. Polymer Bulletin, 71(1), 57-82. https://doi.org/10.1007/s00289-013-1045-6
Manaila, E., Stelescu, M. D., Craciun, G., & Ighigeanu, D. (2016). Wood sawdust/natural rubber ecocomposites cross-linked by electron beam irradiation. Materials, 9(7), 503. https://www.mdpi.com/1996-1944/9/7/503
Manshaie, R., Nouri Khorasani, S., Jahanbani Veshare, S., & Rezaei Abadchi, M. (2011). Effect of electron beam irradiation on the properties of natural rubber (NR)/styrene–butadiene rubber (SBR) blend. Radiation Physics and Chemistry, 80(1), 100-106. https://doi.org/https://doi.org/10.1016/j.radphyschem.2010.08.015
Minoura, Y., & Asao, M. (1961). Studies on the ?-irradiation of natural rubber latex. The effects of organic halogen compounds on crosslinking by ?-irradiation. Journal of Applied Polymer Science, 5(16), 401-407. https://doi.org/https://doi.org/10.1002/app.1961.070051605
Moustafa, A. B., Mounir, R., El Miligy, A. A., & Mohamed, M. A. (2016). Effect of gamma irradiation on the properties of natural rubber/styrene butadiene rubber blends. Arabian Journal of Chemistry, 9, S124-S129. https://doi.org/https://doi.org/10.1016/j.arabjc.2011.02.020
Parathodika, A. R., Raju, A. T., Das, M., Bhattacharya, A. B., Neethirajan, J., & Naskar, K. (2022). Exploring hybrid vulcanization system in high-molecular weight EPDM rubber composites: A statistical approach. Journal of Applied Polymer Science, 139(31), e52721. https://doi.org/https://doi.org/10.1002/app.52721
Phetarporn, V., Loykulnant, S., Kongkaew, C., Seubsai, A., & Prapainainar, P. (2019). Composite properties of graphene-based materials/natural rubber vulcanized using electron beam irradiation. Materials Today Communications, 19, 413-424. https://doi.org/https://doi.org/10.1016/j.mtcomm.2019.03.007
Ratnam, C. T., Nasir, M., Baharin, A., & Zaman, K. (2000). Electron beam irradiation of epoxidized natural rubber. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 171(4), 455-464. https://doi.org/https://doi.org/10.1016/S0168-583X(00)00301-3
Ratnam, C. T., Nasir , M., Baharin, A., & Zaman, K. (2000). Electron beam irradiation of epoxidized natural rubber: FTIR studies. Polymer International, 49(12), 1693-1701. https://doi.org/https://doi.org/10.1002/1097-0126(200012)49:12<1693::AID-PI595>3.0.CO;2-K
Reowdecha, M., Dittanet, P., Sae-oui, P., Loykulnant, S., & Prapainainar, P. (2021). Film and latex forms of silica-reinforced natural rubber composite vulcanized using electron beam irradiation. Heliyon, 7(6), e07176. https://doi.org/https://doi.org/10.1016/j.heliyon.2021.e07176
SCCP, (Scientific, Committee, on, Consumer, & Products. (2007). Opinion on the presence and release of nitrosamines and nitrosatable compounds from rubber balloons (SCCP/1132/07, Issue.
Senna, M. M., Mohamed, R. M., Shehab-Eldin, A. N., & El-Hamouly, S. (2012). Characterization of electron beam irradiated natural rubber/modified starch composites. Journal of Industrial and Engineering Chemistry, 18(5), 1654-1661. https://doi.org/https://doi.org/10.1016/j.jiec.2012.03.004
Stelescu, M.-D., Manaila, E., Craciun, G., & Dumitrascu, M. (2014). New green polymeric composites based on hemp and natural rubber processed by electron beam irradiation. The Scientific World Journal, 2014, 684047. https://doi.org/10.1155/2014/684047
Sukthawon, C., Dittanet, P., Saeoui, P., Loykulnant, S., & Prapainainar, P. (2020). Electron beam irradiation crosslinked chitosan/natural rubber -latex film: Preparation and characterization. Radiation Physics and Chemistry, 177, 109159. https://doi.org/https://doi.org/10.1016/j.radphyschem.2020.109159
Tsushima, K., Makuuchi, K., Yoshii, F., & Ishigaki, I. (1990). Commercialization of protective rubber gloves by radiation vulcanization. http://inis.iaea.org/search/search.aspx?orig_q=RN:21083295
Varghese, N., Varghese, S., Shybi, A., & Kurian, T. (2021). Enhanced mechanical properties of radiation vulcanized natural rubber latex by using t-butyl hydroperoxide. Progress in Rubber, Plastics and Recycling Technology, 37(3), 203-215. https://doi.org/10.1177/1477760620977501
Wiroonpochit, P., Uttra, K., Jantawatchai, K., Hansupalak, N., & Chisti, Y. (2017). Sulfur-Free Prevulcanization of Natural Rubber Latex by Ultraviolet Irradiation in the Presence of Diacrylates. Industrial & Engineering Chemistry Research, 56(25), 7217-7223. https://doi.org/10.1021/acs.iecr.7b01133
Woo, L., & Sandford, C. L. (2002). Comparison of electron beam irradiation with gamma processing for medical packaging materials. Radiation Physics and Chemistry, 63(3), 845-850. https://doi.org/https://doi.org/10.1016/S0969-806X(01)00664-8
Zin, W. M. b. W., Mohid, N. b., Hasan, J. b., Noor, W. K. A. b. W. M., & Jaafar, Z. (1993). The preparation of RVNRL using Malaysian - produced latices. Radiation Physics and Chemistry, 42(1), 101-105. https://doi.org/https://doi.org/10.1016/0969-806X(93)90213-E
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Mili Purbaya

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Submission of a original research or review articles in Warta Perkaretan implies that the submitted  manuscript has not been published in any scientific journal (except being part of the abstract, thesis, or report). The submitted manuscript also is not under consideration for publication elsewhere. All co-authors involve in the publication of the manuscript should give their approval. Once, the manuscript is accepted and then published in Warta Perkaretan, the Author(s) keep hold the copyright and retain publishing right without restrictions. Author(s) and Warta Perkaretan users are allowed to multiply the published manuscript as long as not for commercial purposes. The journal users are also permissible to share the published manuscript with an acknowledgement to the Author(s). The Editorial Boards suggest that the Authors should manage patent before publishing their new inventions.





