POTENSI IRADIASI ELEKTRON BEAM DALAM VULKANISASI KARET ALAM: SOLUSI RAMAH LINGKUNGAN UNTUK INDUSTRI KARET

Authors

  • Mili Purbaya

DOI:

https://doi.org/10.22302/ppk.wp.v44i2.1138

Keywords:

vulkanisasi, karet alam, elektron beam, ikatan silang, alergi protein, sensitizer

Abstract

Karet alam merupakan material polimer yang banyak digunakan dalam berbagai industri karena sifat mekaniknya yang unggul, seperti elastisitas dan kekuatan tarik yang tinggi. Namun, material ini memiliki kelemahan, termasuk ketergantungan pada suhu, kandungan protein alergen, dan dampak lingkungan dari proses vulkanisasi konvensional. Metode vulkanisasi konvensional berbasis sulfur dan akselerator dapat menghasilkan senyawa berbahaya, seperti N-nitrosamin, yang memiliki potensi risiko bagi kesehatan dan lingkungan. Alternatif yang lebih ramah lingkungan adalah vulkanisasi menggunakan radiasi, khususnya dengan teknologi elektron beam. Teknologi ini memungkinkan pembentukan ikatan silang tanpa memerlukan bahan kimia tambahan, sehingga mengurangi emisi polutan, meningkatkan ketahanan termal, dan menurunkan kandungan protein dalam karet alam. Vulkanisasi berbasis radiasi telah terbukti meningkatkan sifat mekanik karet tanpa perlu penggunaan sulfur atau bahan kimia dalam jumlah besar. Meskipun radiasi sinar gamma dan elektron beam dapat membentuk ikatan silang dalam karet, dosis yang diperlukan cukup tinggi, sehingga efisiensi proses perlu ditingkatkan. Berbagai pendekatan telah dikembangkan, termasuk kombinasi radiasi dengan gelombang mikro serta penggunaan sensitizer untuk menurunkan dosis radiasi yang diperlukan. Namun, pemilihan sensitizer harus mempertimbangkan aspek keamanan dan dampak lingkungan. Kajian ini membahas mekanisme interaksi elektron beam dengan polimer, pembentukan ikatan silang, efektivitas elektron beam dalam mengurangi kandungan protein lateks karet alam, serta evaluasi vulkanisasi dengan dan tanpa sensitizer. Dengan perkembangan teknologi dan meningkatkan kesadaran terhadap lingkungan, vulkanisasi elektron beam memiliki potensi besar dalam mengatasi tantangan industri karet alam saat ini, menawarkan solusi yang lebih aman dan berkelanjutan dibandingkan metode konvensional.

References

Akhtar, F., Makuuchi, K., & Yoshii, F. (1996). Radiation vulcanization of natural rubber latex (NRL) using low energy electron beam accelerator. Proceedings of the Second International Symposium on RVNRL (Radiation Vulcanisation of Natural Rubber Latex), Malaysia.

Chen, H.-l., Li, T., Xing, K., Li, K.-l., Zhang, M.-d., & Li, Q.-l. (2017). Experimental investigation of technological conditions and temperature distribution in rubber material during microwave vulcanization process. Journal of Thermal Analysis and Calorimetry, 130(3), 2079-2091. https://doi.org/10.1007/s10973-017-6601-0

Chirinos, H., Yoshii, F., Makuuchi, K., & Lugao, A. (2003). Radiation vulcanization of natural rubber latex using 250 keV electron beam machine. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 208, 256-259. https://doi.org/https://doi.org/10.1016/S0168-583X(03)01114-5

Chong, E. L., Ahmad, I., Dahlan, H. M., & Abdullah, I. (2010). Reinforcement of natural rubber/high density polyethylene blends with electron beam irradiated liquid natural rubber-coated rice husk. Radiation Physics and Chemistry, 79(8), 906-911. https://doi.org/https://doi.org/10.1016/j.radphyschem.2010.02.011

Craciun, G., Manaila, E., & Stelescu, M. D. (2016). New elastomeric materials based on natural rubber obtained by electron beam irradiation for food and pharmaceutical use. Materials, 9(12), 999. https://www.mdpi.com/1996-1944/9/12/999

Drobny, J. G. (2013). Fundamentals of Radiation Chemistry and Physics. In J. G. Drobny (Ed.), Ionizing Radiation and Polymers (pp. 11-26). William Andrew Publishing. https://doi.org/https://doi.org/10.1016/B978-1-4557-7881-2.00002-X

Hansupalak, N., Srisuk, S., Wiroonpochit, P., & Chisti, Y. (2016). Sulfur-free prevulcanization of natural rubber latex by ultraviolet irradiation. Industrial & Engineering Chemistry Research, 55(14), 3974-3981. https://doi.org/10.1021/acs.iecr.6b00076

Haque, M. D. E., Makuuchi, K., Mitomo, H., Yoshii, F., & Ikeda, K. (2005). A new trend in radiation vulcanization of natural rubber latex with a low energy electron beam. Polymer Journal, 37(5), 333-339. https://doi.org/10.1295/polymj.37.333

Haque, M. E., Dafader, N. C., Akhtar, F., & Ahmad, M. U. (1996). Radiation dose required for the vulcanization of natural rubber latex. Radiation Physics and Chemistry, 48(4), 505-510. https://doi.org/https://doi.org/10.1016/0969-806X(96)00002-3

Ibrahim, S., Badri, K., Ratnam, C. T., & Ali, N. H. M. (2018). Enhancing mechanical properties of prevulcanized natural rubber latex via hybrid radiation and peroxidation vulcanizations at various irradiation doses. Radiation Effects and Defects in Solids, 173(5-6), 427-434. https://doi.org/10.1080/10420150.2018.1462366

Jayasuriya, M. M., Makuuchi, K., & Yoshi, F. (2001). Radiation vulcanization of natural rubber latex using TMPTMA and PEA. European Polymer Journal, 37(1), 93-98. https://doi.org/https://doi.org/10.1016/S0014-3057(00)00091-4

Jönsson, L. S., Lindh, C. H., Bergendorf, U., Axmon, A., Littorin, M., & Jönsson, B. A. (2009). N-nitrosamines in the southern Swedish rubber industries – exposure, health effects, and immunologic markers. Scandinavian Journal of Work, Environment & Health(3), 203-211. https://doi.org/10.5271/sjweh.1323

Kruželák, J., Kvasni?áková, A., Hložeková, K., Gregorová, J., & Džuganová, M. (2022). Influence of mixed sulfur and peroxide curing systems on cross-linking and properties of rubber compounds based on EPDM. Macromolecular Symposia, 404(1), 2100395. https://doi.org/https://doi.org/10.1002/masy.202100395

Kruželák, J., Sýkora, R., & Hudec, I. (2016). Sulphur and peroxide vulcanisation of rubber compounds – overview. Chemical Papers, 70(12), 1533-1555. https://doi.org/doi:10.1515/chempap-2016-0093

Makuuchi, K., & Hagiwara, M. (1984). Radiation vulcanization of natural rubber latex with polyfunctional monomers. Journal of Applied Polymer Science, 29(3), 965-976. https://doi.org/https://doi.org/10.1002/app.1984.070290324

Makuuchi, K., & Tsushima, K. (1988). Radiation vulcanization of natural rubber latex with monofunctional acrylic monomers. Nippon Gomu Kyokaishi, 61(7), 478-482.

Manaila, E., Craciun, G., Stelescu, M.-D., Ighigeanu, D., & Ficai, M. (2014). Radiation vulcanization of natural rubber with polyfunctional monomers. Polymer Bulletin, 71(1), 57-82. https://doi.org/10.1007/s00289-013-1045-6

Manaila, E., Stelescu, M. D., Craciun, G., & Ighigeanu, D. (2016). Wood sawdust/natural rubber ecocomposites cross-linked by electron beam irradiation. Materials, 9(7), 503. https://www.mdpi.com/1996-1944/9/7/503

Manshaie, R., Nouri Khorasani, S., Jahanbani Veshare, S., & Rezaei Abadchi, M. (2011). Effect of electron beam irradiation on the properties of natural rubber (NR)/styrene–butadiene rubber (SBR) blend. Radiation Physics and Chemistry, 80(1), 100-106. https://doi.org/https://doi.org/10.1016/j.radphyschem.2010.08.015

Minoura, Y., & Asao, M. (1961). Studies on the ?-irradiation of natural rubber latex. The effects of organic halogen compounds on crosslinking by ?-irradiation. Journal of Applied Polymer Science, 5(16), 401-407. https://doi.org/https://doi.org/10.1002/app.1961.070051605

Moustafa, A. B., Mounir, R., El Miligy, A. A., & Mohamed, M. A. (2016). Effect of gamma irradiation on the properties of natural rubber/styrene butadiene rubber blends. Arabian Journal of Chemistry, 9, S124-S129. https://doi.org/https://doi.org/10.1016/j.arabjc.2011.02.020

Parathodika, A. R., Raju, A. T., Das, M., Bhattacharya, A. B., Neethirajan, J., & Naskar, K. (2022). Exploring hybrid vulcanization system in high-molecular weight EPDM rubber composites: A statistical approach. Journal of Applied Polymer Science, 139(31), e52721. https://doi.org/https://doi.org/10.1002/app.52721

Phetarporn, V., Loykulnant, S., Kongkaew, C., Seubsai, A., & Prapainainar, P. (2019). Composite properties of graphene-based materials/natural rubber vulcanized using electron beam irradiation. Materials Today Communications, 19, 413-424. https://doi.org/https://doi.org/10.1016/j.mtcomm.2019.03.007

Ratnam, C. T., Nasir, M., Baharin, A., & Zaman, K. (2000). Electron beam irradiation of epoxidized natural rubber. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 171(4), 455-464. https://doi.org/https://doi.org/10.1016/S0168-583X(00)00301-3

Ratnam, C. T., Nasir , M., Baharin, A., & Zaman, K. (2000). Electron beam irradiation of epoxidized natural rubber: FTIR studies. Polymer International, 49(12), 1693-1701. https://doi.org/https://doi.org/10.1002/1097-0126(200012)49:12<1693::AID-PI595>3.0.CO;2-K

Reowdecha, M., Dittanet, P., Sae-oui, P., Loykulnant, S., & Prapainainar, P. (2021). Film and latex forms of silica-reinforced natural rubber composite vulcanized using electron beam irradiation. Heliyon, 7(6), e07176. https://doi.org/https://doi.org/10.1016/j.heliyon.2021.e07176

SCCP, (Scientific, Committee, on, Consumer, & Products. (2007). Opinion on the presence and release of nitrosamines and nitrosatable compounds from rubber balloons (SCCP/1132/07, Issue.

Senna, M. M., Mohamed, R. M., Shehab-Eldin, A. N., & El-Hamouly, S. (2012). Characterization of electron beam irradiated natural rubber/modified starch composites. Journal of Industrial and Engineering Chemistry, 18(5), 1654-1661. https://doi.org/https://doi.org/10.1016/j.jiec.2012.03.004

Stelescu, M.-D., Manaila, E., Craciun, G., & Dumitrascu, M. (2014). New green polymeric composites based on hemp and natural rubber processed by electron beam irradiation. The Scientific World Journal, 2014, 684047. https://doi.org/10.1155/2014/684047

Sukthawon, C., Dittanet, P., Saeoui, P., Loykulnant, S., & Prapainainar, P. (2020). Electron beam irradiation crosslinked chitosan/natural rubber -latex film: Preparation and characterization. Radiation Physics and Chemistry, 177, 109159. https://doi.org/https://doi.org/10.1016/j.radphyschem.2020.109159

Tsushima, K., Makuuchi, K., Yoshii, F., & Ishigaki, I. (1990). Commercialization of protective rubber gloves by radiation vulcanization. http://inis.iaea.org/search/search.aspx?orig_q=RN:21083295

Varghese, N., Varghese, S., Shybi, A., & Kurian, T. (2021). Enhanced mechanical properties of radiation vulcanized natural rubber latex by using t-butyl hydroperoxide. Progress in Rubber, Plastics and Recycling Technology, 37(3), 203-215. https://doi.org/10.1177/1477760620977501

Wiroonpochit, P., Uttra, K., Jantawatchai, K., Hansupalak, N., & Chisti, Y. (2017). Sulfur-Free Prevulcanization of Natural Rubber Latex by Ultraviolet Irradiation in the Presence of Diacrylates. Industrial & Engineering Chemistry Research, 56(25), 7217-7223. https://doi.org/10.1021/acs.iecr.7b01133

Woo, L., & Sandford, C. L. (2002). Comparison of electron beam irradiation with gamma processing for medical packaging materials. Radiation Physics and Chemistry, 63(3), 845-850. https://doi.org/https://doi.org/10.1016/S0969-806X(01)00664-8

Zin, W. M. b. W., Mohid, N. b., Hasan, J. b., Noor, W. K. A. b. W. M., & Jaafar, Z. (1993). The preparation of RVNRL using Malaysian - produced latices. Radiation Physics and Chemistry, 42(1), 101-105. https://doi.org/https://doi.org/10.1016/0969-806X(93)90213-E

Downloads

Published

2025-12-31

How to Cite

Purbaya, M. (2025). POTENSI IRADIASI ELEKTRON BEAM DALAM VULKANISASI KARET ALAM: SOLUSI RAMAH LINGKUNGAN UNTUK INDUSTRI KARET. Warta Perkaretan, 44(2), 185–202. https://doi.org/10.22302/ppk.wp.v44i2.1138