STRATEGI ADAPTASI TANAMAN KARET DALAM MENGHADAPI CEKAMAN KEKERINGAN: SEBUAH TINJAUAN METODE SELEKSI KLON KARET TOLERAN KEKERINGAN

Authors

DOI:

https://doi.org/10.22302/ppk.wp.v44i2.1263

Keywords:

antioksidan, Hevea brasiliensis, indeks faktor kekeringan (drought factor index, DFI), perpendaran klorofil (chlorophyll fluorescence, CF), spesies oksigen reaktif (reactive oxygen species, ROS)

Abstract

Dalam budidaya tanaman karet, perlu dilakukan seleksi klon karet tahan kekeringan sebagai antisipasi fenomena pemanasan global yang saat ini sedang terjadi. Tulisan ini bertujuan untuk menguraikan parameter-parameter seleksi tanaman karet toleran kekeringan yang berkaitan dengan strategi drought tolerance dan drought avoidance. Mekanisme pertahanan tanaman dalam kondisi lingkungan yang kering dengan menggunakan strategi drought tolerance dapat melibatkan mekanisme enzimatik maupun non-enzimatik. Mekanisme pertahanan non-enzimatik meliputi penetralisiran ROS melalui bermacam substansi antioksidan non-enzimatik, misalnya prolin, glutathione (GSH), asam askorbat (AsA), karotenoid, dan flavonoid. Pada strategi adaptasi drought tolerance dengan mekanisme enzimatik, terdapat beberapa jenis yang terlibat, misalnya superoksida dismutase (SOD), peroksidase (POD), katalase (CAT), askorbat peroksidase (APX), dan glutathione peroksidase (GPX). Untuk mekanisme drought avoidance meliputi adaptasi tanaman dapat melalui pemanjangan akar, pengaturan bukaan stomata, dan chlorophyll fluorescence (CF). Parameter CF dapar dipergunakan untuk menghitung drought factor index (DFI). Dari beberapa parameter tersebut, salah satu parameter non-destructive yang dapat diamati dalam waktu yang relative singkat adalah DFI.

 

Kata kunci: antioksidan, Hevea brasiliensis, fluoresensi klorofil, indeks faktor kekeringan, ROS

Author Biography

Andi Nur Cahyo, Sembawa Research Centre, Indonesian Rubber Research Institute

Agronomy

References

Ardika, R., Cahyo, A. N., & Wijaya, T. (2011). Dinamika Gugur Daun dan Produksi Berbagai Klon Karet Kaitannya dengan Kandungan Air Tanah. Jurnal Penelitian Karet, 29(2), 102–109.

Barry, R. G., & Chorley, R. J. (1976). Atmosphere, Weather and Climate (2nd ed.). Routledge.

Boureima, S., Oukarroum, A., Diouf, M., Cisse, N., & Van Damme, P. (2012). Screening for drought tolerance in mutant germplasm of sesame (Sesamum indicum) probing by chlorophyll a fluorescence. Environmental and Experimental Botany, 81, 37–43. https://doi.org/10.1016/j.envexpbot.2012.02.015

Buapet, P., Rasmusson, L. M., Gullström, M., & Björk, M. (2013). Photorespiration and Carbon Limitation Determine Productivity in Temperate Seagrasses. PLoS ONE, 8(12), Article 12. https://doi.org/10.1371/journal.pone.0083804

Cahyo, A. N. (2021). Pemanfaatan Parameter Chlorophyll-a Fluorescence untuk Seleksi Klon Karet Tahan Kekeringan. Warta Perkaretan, 40(2), 85–94. https://doi.org/10.22302/ppk.wp.v40i2.811

Cahyo, A. N., & Ardika, R. (2023). Prediction of Rubber Yield Based on Soil Water Content. IOP Conference Series: Earth and Environmental Science, 1162(1), 012003. https://doi.org/10.1088/1755-1315/1162/1/012003

Cahyo, A. N., Murti, R. H., & Putra, E. T. S. (2020). Dampak Kekeringan terhadap Proses Fisiologis, Pertumbuhan, dan Hasil Tanaman Karet (Hevea brasiliensis Müll. Arg.). Warta Perkaretan, 39(1), 57–72.

Cahyo, A. N., Murti, R. H., Putra, E. T. S., Nuringtyas, T. R., Fabre, D., & Montoro, P. (2021). Assessment of factual measurement times for chlorophyll-a fluorescence in rubber (Hevea brasiliensis) clones. Biodiversitas Journal of Biological Diversity, 22(6), 3470–3477. https://doi.org/10.13057/biodiv/d220656

Cahyo, A. N., Murti, R. H., Putra, E. T. S., Oktavia, F., Ismawanto, S., Mournet, P., Fabre, D., & Montoro, P. (2022). Screening and QTLs detection for drought factor index trait in rubber (Hevea brasiliensis Müll. Arg.). Industrial Crops and Products, 190, 115894. https://doi.org/10.1016/j.indcrop.2022.115894

Fang, Y., & Xiong, L. (2015). General mechanisms of drought response and their application in drought resistance improvement in plants. Cellular and Molecular Life Sciences, 72(4), Article 4. https://doi.org/10.1007/s00018-014-1767-0

Fikret, Y., Manar, T., ?ebnem, E., ?ebnem, K., & Özlem, U. (2013). SOD, CAT, GR and APX Enzyme Activities in Callus Tissues of Susceptible and Tolerant Eggplant Varieties under Salt Stress. Research Journal of Biotechnology, 8(11), Article 11.

Govindjee. (1995). Sixty-Three Years Since Kautsky: Chlorophyll a Fluorescence. Functional Plant Biology, 22(2), Article 2. https://doi.org/10.1071/PP9950131

Guo, H., Sun, Y., Peng, X., Wang, Q., Harris, M., & Ge, F. (2016). Up-regulation of abscisic acid signaling pathway facilitates aphid xylem absorption and osmoregulation under drought stress. Journal of Experimental Botany, 67(3), Article 3. https://doi.org/10.1093/jxb/erv481

Hansatech Instrument Ltd. (2018). Handy PEA+ and Pocket PEA System Manual. Hansatech Instrument Ltd.

Heidari, M. (2009). Antioxidant Activity and Osmolyte Concentration of Sorghum (Sorghum bicolor) and Wheat (Triticum aestivum) Genotypes under Salinity Stress. Asian Journal of Plant Sciences, 8(3), Article 3. https://doi.org/10.3923/ajps.2009.240.244

IPCC. (2018). Summary for Policymakers. In V. Masson-Delmotte, P. Zhai, H. O. Pörtner, D. Roberts, J. Skea, P. R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J. B. R. Matthews, Y. Chen, X. Zhou, M. I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, & T. Waterfield (Eds.), Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty (p. 32). World Meteorological Organization.

Kalaji, H. M., Jajoo, A., Oukarroum, A., Brestic, M., Zivcak, M., Samborska, I. A., Cetner, M. D., ?ukasik, I., Goltsev, V., & Ladle, R. J. (2016). Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiologiae Plantarum, 38(102), Article 102. https://doi.org/10.1007/s11738-016-2113-y

Karuppanapandian, T., Moon, J.-C., Kim, C., & Manoharan, K. (2011). Reactive oxygen species in plants: Their generation, signal transduction, and scavenging mechanisms. Australian Journal of Crops Science, 5(6), 709–725.

Karyudi. (2001). Rubber (Hevea brasiliensis) osmoregulation as the respons to water stress I : Variation between recommended, expected, and germplasm. Indonesian Journal of Natural Rubber Research, 19(1–3), Article 1–3.

Kholová, J., Hash, C. T., Ko?ová, M., & Vadez, V. (2011). Does a terminal drought tolerance QTL contribute to differences in ROS scavenging enzymes and photosynthetic pigments in pearl millet exposed to drought? Environmental and Experimental Botany, 71(1), Article 1. https://doi.org/10.1016/j.envexpbot.2010.11.001

Krishan, B. (2017). Assessment of drought tolerance in few clones of natural rubber (Hevea brasiliensis) under dry hot climate of Odisha, India. Journal of Experimental Biology and Agricultural Sciences, 5(1), Article 1. https://doi.org/10.18006/2017.5(1).106.110

Lara, I., & Vendrell, M. (2000). Changes in Abscisic Acid Levels, Ethylene Biosynthesis, and Protein Patterns during Fruit Maturation of `Granny Smith’ Apples. Journal of the American Society for Horticultural Science, 125(2), Article 2. https://doi.org/10.21273/JASHS.125.2.183

Lawlor, D. W. (2013). Genetic engineering to improve plant performance under drought: Physiological evaluation of achievements, limitations, and possibilities. Journal of Experimental Botany, 64(1), Article 1.

Luke, L. P., Sathik, M. B. M., Thomas, M., Kuruvilla, L., Sumesh, K. V., & Annamalainathan, K. (2015). Quantitative expression analysis of drought responsive genes in clones of Hevea with varying levels of drought tolerance. Physiol. Mol. Biol. Plants, 21(2), Article 2.

Luo, L. J. (2010). Breeding for water-saving and drought-resistance rice (WDR) in China. Journal of Experimental Botany, 61(13), Article 13. https://doi.org/10.1093/jxb/erq185

Meinke, H., & Hammer, G. L. (1995). A peanut simulation model: II. Assesing regional production potential. Agronomy Journal, 87, 1093–1099.

Mou, W., Li, D., Bu, J., Jiang, Y., Khan, Z. U., Luo, Z., Mao, L., & Ying, T. (2016). Comprehensive Analysis of ABA Effects on Ethylene Biosynthesis and Signaling during Tomato Fruit Ripening. PLoS ONE, 11(4), Article 4. https://doi.org/10.1371/journal.pone.0154072

Oukarroum, A., Madidi, S. E., Schansker, G., & Strasser, R. J. (2007). Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and re-watering. Environmental and Experimental Botany, 60(3), Article 3. https://doi.org/10.1016/j.envexpbot.2007.01.002

Peterhansel, C., Horst, I., Niessen, M., Blume, C., Kebeish, R., Kürkcüoglu, S., & Kreuzaler, F. (2010). Photorespiration. The Arabidopsis Book / American Society of Plant Biologists, 8, e0130. https://doi.org/10.1199/tab.0130

Priyadarshan, P. M. (2017). Biology of Hevea Rubber. Springer Science+Business Media.

Rhodes, D., & Hanson, A. D. (1993). Quaternary Ammonium and Tertiary Sulfonium Compounds in Higher Plants. Annual Review of Plant Physiology and Plant Molecular Biology, 44, 357–384.

Sanier, C., Oliver, G., Clément-Vidal, A., Fabre, D., Lardet, L., & Montoro, P. (2013). Influence of Water Deficit on the Physiological and Biochemical Parameters of in vitro Plants from Hevea brasiliensis Clone PB 260. Journal of Rubber Research, 16(1), Article 1.

Stirbet, A., Lazár, D., Kromdijk, J., & Govindjee. (2018). Chlorophyll a fluorescence induction: Can just a one-second measurement be used to quantify abiotic stress responses? Photosynthetica, 56(1), Article 1. https://doi.org/10.1007/s11099-018-0770-3

Strasser, R. J., Tsimilli-Michael, M., & Srivastava, A. (2004). Analysis of the Chlorophyll a Fluorescence Transient. In G. C. Papageorgiou & Govindjee (Eds.), Chlorophyll a Fluorescence (Vol. 19, pp. 321–362). Springer Netherlands. https://doi.org/10.1007/978-1-4020-3218-9_12

Strauss, A. J., Krüger, G. H. J., Strasser, R. J., & Heerden, P. D. R. V. (2006). Ranking of dark chilling tolerance in soybean genotypes probed by the chlorophyll a fluorescence transient O-J-I-P. Environmental and Experimental Botany, 56(2), Article 2. https://doi.org/10.1016/j.envexpbot.2005.01.011

Thomas, Cahyo, A. N., & Ardika, R. (2011). Anticipation and Effort to Cope With La Nina Climate Anomaly in Rubber Plantation. Sriwijaya University Agricutural Department Seminar: Role of Science and Technology on Climate Change Anticipation on The Perspective Sustainable Agriculture.

Thomas, & Lasminingsih, M. (1994). Respons of some rubber clones on drought. Warta Perkaretan, 12(3), Article 3.

Vijayakumar, K. R., Chandrashekar, T. R., & Philip, V. (2000). Agroclimate. In P. J. George & C. K. Jacob (Eds.), Natural Rubber: Agromanagement and Crop Processing. Rubber Research Institute of India.

Vijayakumar, K. R., Dey, S. K., Chandrasekhar, T. R., Devakumar, A. S., Mohankrishna, T., Rao, P. S., & Sethuraj, M. R. (1998). Irrigation requirement of rubber trees Hevea brasiliensis in the subhumid tropics. Agricultural Water Management, 245–259.

Wang, L. (2014). Physiological and molecular responses to drought stress in rubber tree (Hevea brasiliensis Muell. Arg.). Plant Physiology and Biochemistry, 83, 243–249. https://doi.org/10.1016/j.plaphy.2014.08.012

Wang, Z., Li, G., Sun, H., Ma, L., Guo, Y., Zhao, Z., Gao, H., & Mei, L. (2018). Effects of drought stress on photosynthesis and photosynthetic electron transport chain in young apple tree leaves. Biology Open, 7(11), Article 11. https://doi.org/10.1242/bio.035279

Waszczak, C., Carmody, M., & Kangasjärvi, J. (2018). Reactive Oxygen Species in Plant Signaling. Annual Review of Plant Biology, 69, 209–236. https://doi.org/10.1146/annurev-arplant-042817-040322

Watson, G. A. (1989). Climate and Soil. In C. C. Webster & W. J. Baulkwill (Eds.), Rubber (pp. 124–164). Longman Scientific and Technical.

Wijaya, T. (2008). Kesesuaian Tanah dan Iklim untuk Karet. Warta Perkaretan, 27(2), Article 2.

Zheng, C., Chen, J.-P., Wang, X.-W., & Li, P. (2025). Reactive Oxygen Species in Plants: Metabolism, Signaling, and Oxidative Modifications. Antioxidants, 14(6), 617. https://doi.org/10.3390/antiox14060617

Downloads

Published

2025-12-31

How to Cite

Cahyo, A. N. (2025). STRATEGI ADAPTASI TANAMAN KARET DALAM MENGHADAPI CEKAMAN KEKERINGAN: SEBUAH TINJAUAN METODE SELEKSI KLON KARET TOLERAN KEKERINGAN . Warta Perkaretan, 44(2), 203 – 216. https://doi.org/10.22302/ppk.wp.v44i2.1263