KAJIAN TEKNO EKONOMI PENDIRIAN INDUSTRI KARET BANTALAN JEMBATAN JENIS KARET ALAM DAN KARET KLOROPRENA
DOI:
https://doi.org/10.22302/ppk.wp.v36i1.337Abstract
Peningkatan konsumsi domestik karet alam melalui pemanfaatan produk karet untuk mendukung pembangunan infrastruktur menjadi solusi untuk kembali memperkuat harga karet alam yang sejak akhir tahun 2011 terus mengalami pelemahan. Produk karet bantalan jembatan yang berfungsi sebagai isolator pelindung struktur jembatan dari getaran dan beban lalu lintas berpotensi untuk dikembangkan karena permintaan tinggi di pasaran. Dalam artikel ini diulas kajian tekno-ekonomi pendirian industri karet bantalan jembatan karet alam dan kloroprena dari aspek teknik hingga ekonomi. Data primer diperoleh dengan metode survei melalui teknik wawancara kepada responden yang dipilih secara sengaja, data sekunder dilakukan dengan menerapkan teknik multiplikasi dokumen dan pencatatan data dari instansi terkait lainnya. Metode pengolahan data menggunakan analisis deskriptif kualitatif dan kuantitatif. Hasil kajian diketahui potensi pasar produk karet bantalan jembatan masih terbuka sebesar 57.000 di tahun 2016 dan ditetapkan kapasitas produksi sebesar 17.000 per tahun (30%) dengan komposisi 75% karet bantalan dari karet alam dan 25% dari karet kloroprena. Ukuran karet bantalan yang diproduksi mengacu pada ukuran standar yang ditetapkan oleh kementerian PUPR Jenis 1 : 350x300x36 mm (30%), Jenis 2 : 400x350x39 mm (35%), Jenis 3 : 450x400x45 mm (35%). Hasil kelayakan finansial menunjukkan bahwa industri karet bantalan jembatan dan jalan layang layak didirikan karena memberikan nilai NPV sebesar IDR 14,22 Milyar (bernilai positif atau lebih besar dari nol), IRR sebesar 20,10% (lebih besar dari faktor diskonto 14%), B/C rasio sebesar 1,22 (lebih besar dari 1) dan PBP selama 4,78 tahun. Industri ini sangat sensitif terhadap penurunan harga jual produk dan kenaikan nilai tukar USD terhadap IDR.
Kata kunci : konsumsi domestik karet alam, industri hilir karet, bantalan jembatan.
References
Alam, M. S., Bhuiyan, M. A. R., and Billah, A. H. M. M. (2012). Seismic fragility assessment of SMA-bar restrained multi-span continuous highway bridge isolated by different laminated rubber bearings in medium to strong seismic risk zones. Bulletin Earthquake Engineering, 10, 1885-1909. doi: 10.1007/s10518-012-9381-8.
Alam, M. S., and Bhuiyan, A. R. (2012).Use of shape memory alloys with laminated rubber bearings in seismic isolation of multi-span continuous moderate to strong seismic zones. Proceedings of the 15th World Conference on Earthquake Engineering, Lisbon, September 2012.
Asl, M. J., Rahman, M. M., and Karbakhsh, A. (2014). Numerical analysis of seismic elastomeric isolation bearing in the base isolated buildings. Open Journal of Earthquake Research, 3, 1-4. doi: 10.4236/ojer.2014.31001.
Aviram, A., Schellenberg, A., and Stojadinovic, B. (2012). Seismic design and performance of two isolation system used for reinforced concrete bridge construction. Proceedings of the 15th World Conference on Earthquake Engineering, Lisbon, September 2012.
Bhuiyan, M. A. R., and Alam, M. S. (2012). Seismic vulnerability assessment of a multi-span continuous highway bridge fitted with shape memory alloy bars and laminated rubber bearings. Earthquake Spectra, 28(4), 1379-1404.
Choun, Y. S., Park, J. H., and Choi, I. K. (2014). Effects of mechanical property variability in lead rubber bearings on the response of seismic isolation system for different ground motions. Nuclear Engineering and Technology, 46(5), 605-618. doi: 10.5516/NET.09.2014.718.
Filipov, E. T., Fahnestock, L. A., Steelman, J. S., Hajjar, J. F., LaFave, J. M., and Foutch, D. A. (2013). Evaluation of quasi-isolated seismic bridge behavior using nonlinear bearing models. Engineering Structure, 49, 168-181. doi: 10.1016/j.engstruct.2012.10.011.
Gu, H. S., and Itoh, Y. (2012). Aging inside natural rubber bearings and prediction method. Journal of Beijing University of Technology, 38(2), 186-193.
Haque, M. N., Bhuiyan, A. R., and Alam, M. J. (2010). Seismic response analysis of base isolated highway bridge: Effectiveness of using laminated rubber bearings. Proceedings of IABSE-JSCE Joint Conference on Advances in Bridge Engineering-II, Dhaka, Augustus 2010.
Haque, Md. N., Zisan, Md. B., and Bhuiyan, A. R. (2013). Seismic response analysis of base isolated building: Effect of lead rubber bearing characteristics. Malaysian Journal of Civil Engineering, 25(2), 154-167.
Iancu, V., Vasile, O., and Gillich, G. R. (2012).Modelling and characterization of hybrid rubber-based earthquake isolation system. Materiale Plastice, 49(4), 237-241.
Itoh, Y., and Gu, H. S. (2009). Prediction of aging characteristics in natural rubber bearings used in bridges. Journal of Bridge Engineering, 14(2), 122-128. Doi: 10.1061/(ASCE)1084-0702(2009)14:2(122).
Kitahara, T., Kajita, Y., and Kitane, Y. (2012).Investigation on the damage cause of the bridge rubber bearing in the 2011 off the Pacific coast of Tohoku Earthquake.Proceedings of the 15th World Conference on Earthquake Engineering, Lisbon, September 2012.
Liu, H., Wang, X., Sun, F., and Ou, J. (2008). Shaketable test of seismic isolation structure based on SMA wire-laminated rubber combined bearings. Proceedings of the 14th World Conference on Earthquake Engineering, Beijing, October 2008.
Manos G. C., Mitoulis, S., Kourtidis, V., Sextos, A., and Tegos, I. (2007).Study of the behavior of steel laminated rubber bearings under prescribed loads. Proceedings of 10th World Conference on Seismic Isolation, Energy Dissipation and Active Vibrations Control of Structure, Istambul, May 2007.
Ohkura, S., Kitane, Y., and Itoh, Y. (2011). Solar radiation effect on internal temperature of rubber bridge bearing. Proceedings of the Twenty-Fourth KKCNN Symposium on Civil Engineering, Hyogo, December 2011.
Ohkura, S., Paramashanti., Kitane, Y., and Itoh, Y. (2011). Long-term temperature measurement of rubber bridge bearing exposed to solar radiation for aging estimation. Proceedings of 4th International Conference on Advances in Experimental Structural Engineering, Ispra, June 2011.
Ravari, A. K., Othman, I., Ibrahim, Z., and Hashamdar, H. (2011). Variations of horizontal stiffness of laminated rubber bearings using new boundary conditions. Scientific Research and Essays, 6(14), 3065-3071.
Ravari, A. K., Othman, I., Ibrahim, Z., and Ab-Malek, K. (2012). P-Δ and end rotation effects on the influence of mechanical properties elastomeric isolation bearings. Journal of Structural Engineering, 138, 6. Doi: 10.1061/(ASCE)ST.1943-541X.0000503
Razzaq, M. K., Bhuiyan, A. R., Okui, Y., Mitamura, H., and Imai, T. (2010). Effect of rubber bearing’s modeling on seismic response of base isolated highway bridge. Joint Conference Proceedings.7th International Conference on Urban Earthquake Engineering & 5th International Conference on Earthquake Engineering, Tokyo , March 2010.
Sanchez, J., Masroor, A., Mosqueda, G., and Ryan, K. (2013). Static and dynamic stability of elastomeric bearing for seismic protection of structures. Journal of Structural Engineering, 139(1), 1149-1159 .doi: 10.1061/(ASCE)ST.1943-541X.0000660.
Steelman, J. S, Fahnestock, L. A., Filipov, E. T., LaFave, J. M, Hajjar, J. F., and Foutch, D. A. (2013). Shear and friction response of nonseismic laminated elastomer bearings subject to seismic demands. Journal of Bridge Engineering, 18(7), 612-623. doi: 10.1061/(ASCE)BE.1943-5592.0000406.
Warn, G. P., and Ryan, K. L. (2012). A review of seismic isolation for buildings: Historical development and research needs. Buildings, 2, 300-325. Doi: 10.3390/buildings2030300.
Weisman, J., and Warn, G. P. (2012). Stability of elastomeric and lead rubber seismic isolation bearings. Journal of Structural Engineering, 138(2), 215-223. doi: 10.1061/(ASCE)ST.1943-541X.0000459.
Yachya, H. (1988). Studi kelayakan industri kecil bantalan jembatan. Menara Perkebunan, 52(2), 53-56.