• Charlos Togi Stevanus Sembawa Reseach Center Indonesian Rubber Reseach Institute
  • Thomas Wijaya Pusat Penelitian Karet Jl Salak No 1 Bogor
  • Andi Nur Cahyo Sembawa Reseach Center Indonesian Rubber Reseach Institute



bloking kanal, karet, aliran CO2, gambut, subsiden, Licor LI-850


Pembasahan kembali merupakan suatu upaya dalam mengurangi emisi CO2 akibat drainase yang berlebihan di lahan gambut. Sekat kanal berbasis komposit karet alam adalah suatu teknologi yang dapat digunakan untuk pembasahan kembali lahan gambut. Pada penelitian ini, perhitungan aliran CO2 yang dilepaskan dari lahan gambut dari implikasi bloking kanal berbasis komposit karet alam menggunakan 3 metode, yaitu metode subsiden, empirik dan CO2/H2O gas analyzer (Licor LI-850). Hasil penelitian menunjukkan bahwa 7 bulan setelah pemasangan sekat kanal berbasis komposit karet alam, rata-rata penurunan gambut menurun sebesar 7 cm atau setara reduksi 638,29 ton CO2-eq/ha/tahun. Sementara itu, pengukuran dengan metode empirik menunjukkan perbedaan tinggi muka air tanah di saat musim kemarau di dalam dan luar sekat kanal sebesar 15 cm atau setara dengan 12.506 ton CO2-eq/ha/tahun. Namun hasil perhitungan dengan menggunakan metode subsiden dan empirik sangat besar jika dibandingkan dengan metode CO2/H2O gas analyzer yang hanya berkisar antara 2- 13 ton CO2-eq/ha/tahun pada kedalaman air 40-89 cm.


Ali, M., Taylor, D., & Inubushi, K. (2006). Effects of environmental variations on CO2 efflux from a tropical peatland in eastern sumatra. Wetlands, 26(2), 612-618. doi:10.1672/0277-5212(2006)26[612:EOEVOC]2.0.CO;2.

Bader, C., Müller, M., Szidat, S., Schulin, R., & Leifeld, J. (2018). Response of peat decomposition to corn straw addition in managed organic soils. Geoderma, 309, 75-83. doi:10.1016/j.geoderma.2017.09.001.

Blain, D., Boer, R., Eggleston, S., Gonzalez, S., Hiraishi, T., Irving, W., . . . Towprayoon, S. (2011). 013 supplement to the 2006 ipcc guidelines for national greenhouse gas inventories: Wetlands. Geneva, Switzerland: IPCC.

Blake, G. R. (1965). Methods of soil analysis. Part 1. Pyhsical and mineralogical properties, including statistics of measurement and sampling, agronomy monograph. In C. A. Black (Ed.), Bulk density. Madison , USA: American Society of Agronomy.

Boer, R., Sulistyowati, Las, I., Zed, F., Marispatin, N., Kartakusuma, D. A., & Mulyanto, H. S. (2010). Summary for policy makers : Indonesia second national communication under the United Nations Framework Convention on Climate Change (UNFCC). Jakarta, Indonesia: Kementerian Lingkungan Hidup.

Brummer, C., Papen, H., Wassmann, R., & Brüggemann, N. (2009). Fluxes of CH and CO from soil and termite mounds in south Sudanian savanna of Burkina Faso (West Africa). Global Biogeochemical Cycles, 23(1), 2-13.

Cao, R., Xi, X., Yang, Y., Wei, X., Wu, X., & Sun, S. (2017). The effect of water table decline on soil CO2 emission of Zoige peatland on eastern Tibetan Plateau: A four-year in situ experimental drainage. Applied Soil Ecology, 120, 55-61. doi:10.1016/j.apsoil.2017.07.036.

Carlson, K. M., Goodman, L. K., & May-Tobin, C. C. (2015). Modeling relationships between water table depth and peat soil carbon loss in Southeast Asian plantations. Environmental Research Letters, 10(7), 1-12. doi:0.1088/1748-9326/10/7/074006.

Cifriadi, A. (2010). Material komposit dalam teknologi barang jadi. Warta Perkaretan, 29(1), 64-71.

Clymo, R. S. (1991). Quaternary landscapes : Peat Growth. Minnesota, USA: University of Minnesota Press.

Couwenberg, J. (2011). Greenhouse gas emissions from managed peat soils: is the IPCC reporting guidance realistic? Mires and Peat, 8(2), 1-10.

Dariah, A., Marwanto, S., & Agus, F. (2014). Root- and peat-based CO2 emissions from oil palm plantations. Mitigation and Adaptation Strategies for Global Change, 19(6). doi:10.1007/s11027-013-9515-6.

Evans, C. D., Williamson, J. M., Kacaribu, F., Irawan, D., Suardiwerianto, Y., Hidayat, M. F., & Page, S. E. (2019). Rates and spatial variability of peat subsidence in Acacia plantation and forest landscapes in Sumatra, Indonesia. Geoderma, 338(410–421). doi:10.1016/j.geoderma.2018.12.028.

Farmer, V. C. (1950). The spectrographic analysis of plant ash in the carbon arc. Spectrochimica Acta, 4(3), 224-228. doi:10.1016/0371-1951(50)80005-X.

Grønlund, A., Hauge, A., Hovde, A., & Rasse, D. P. (2008). Carbon loss estimates from cultivated peat soils in Norway: a comparison of three methods. Nutrient Cycling in Agroecosystems, 81(2), 157-167. doi:10.1007/s10705-008-9171-5.

Hao, W., Ling-Fei, Y., Li-Tong, C., Chao, W., & Jin-Sheng, H. (2014). Responses of soil respiration to reduced water table and nitrogen addition in an alpine wetland on the Qinghai-Xizang Plateau. Chinese Journal of Plant Ecology, 38(6), 619–625. doi:10.3724/SP.J.1258.2014.00057.

Hirano, T., Kusin, K., Limin, S., & Osaki, M. (2014). Carbon dioxide emissions through oxidative peat decomposition on a burnt tropical peatland. Global Change Biology, 20(2), 555–565. doi:10.1111/gcb.12296.

Hooijer, A., Page, S., Canadell, J. G., Silvius, M., Kwadijk, J., Wösten, H., & Jauhiainen, J. (2010). Current and future CO2 emissions from drained peatlands in Southeast Asia. Biogeosciences, 7(5), 1505-1514. doi:10.5194/bg-7-1505-2010.

Hooijer, A., Page, S., Jauhiainen, J., Lee, W. A., Lu, X. X., Idris, A., & Anshari, G. (2012). Subsidence and carbon loss in drained tropical peatlands. Biogeosciences, 9(3), 1053-1071. doi:10.5194/bg-9-1053-2012.

Itoh, M., Kosugi, Y., Takanashi, S., Kanemitsu, S., Osaka, K., Hayashi, Y., & Rahim Nik, A. (2012). Effects of soil water status on the spatial variation of carbon dioxide, methane and nitrous oxide fluxes in tropical rain-forest soils in Peninsular Malaysia. Journal of Tropical Ecology, 28(06), 557–570. doi:10.1017/S0266467412000569.

Järveoja, J., Peichl, M., Maddison, M., Soosaar, K., Vellak, K., Karofeld, E., & Mander, Ü. (2016). Impact of water table level on annual carbon and greenhouse gas balances of a restored peat extraction area. Biogeosciences, 13(9), 2637–2651. doi:10.5194/bg-13-2637-2016.

Johnson, L. C., Damman, A. W. H., & Malmer, N. (1990). Sphagnum macrostructure as an indicator of decay and compaction in peat cores from an ombrotrophic South Swedish peat-bog. The Journal of Ecology, 78(3), 633-647. doi:10.2307/2260889.

Khasanah, N., & van Noordwijk, M. (2019). Subsidence and carbon dioxide emissions in a smallholder peatland mosaic in Sumatra, Indonesia. Mitigation and Adaptation Strategies for Global Change, 24(1), 147–163. doi:10.1007/s11027-018-9803-2.

Krohn, J., Lozanovska, I., Kuzyakov, Y., Parvin, S., & Dorodnikov, M. (2017). CH4 and CO2 production below two contrasting peatland micro-relief forms: An inhibitor and δ13C study. Science of The Total Environment, 586, 142–151. doi:10.1016/j.scitotenv.2017.01.192.

Landry, J., & Rochefort, L. (2012). The drainage of peatlands : impacts and rewetting techniques. Québec, Canada: Université Laval.

Madsen, R., Xu, L., Claassen, B., & McDermitt, D. (2009). Surface monitoring method for carbon capture and storage projects. Energy Procedia, 1(1), 2161–2168. doi:10.1016/j.egypro.2009.01.281.

Maspanger, D. R., Cifriadi, A., & Kinasih, N. A. Disain dan pemasangan canal blocking. In N. A. Kinasih, A. P. Bradikta, & A. Ramadhan (Eds.), Penurunan emisi CO2 di lahan gambut dengan pengaturan tata kelola air menggunakan water level-canal blocking berbasis komposit karet alam. Bogor, Indonesia: Pusat Penelitian Karet.

Melling, L., Tan, C. S. Y., Goh, K. J., & Hatano, R. (2013). Soil microbial and root respirations from three ecosystems in tropical peatland of sarawak, Malaysia. Journal Of Oil Palm Research, 25(1), 44-57.

Nusantara, R. W., Hazriani, R., & Suryadi, U. E. (2017, 8 Agustus ). Water-table Depth and Peat Subsidence Due to Land-use Change of Peatlands. Tulisan disajikan pada 1st UPI International Geography Seminar Bandung.

Ohashi, M., Kume, T., Yamane, S., & Suzuki, M. (2007). Hot spots of soil respiration in an Asian tropical rainforest: soil respiration in an asian tropical rainforest. Geophysical Research Letters, 34(8), 1-4. doi:10.1029/2007GL029587.

Page, S. E., Rieley, J. O., & Banks, C. J. (2011). Global and regional importance of the tropical peatland carbon pool: tropical peatland carbon pool. Global Change Biology, 17(2), 798–818. doi:10.1111/j.1365-2486.2010.02279.x.

Saputra, J., Stevanus, C. T., Ardika, R., & Wijaya, T. (2018). Pengujian beberapa alternatif teknik penanaman tanaman karet di lahan gambut. Jurnal Penelitian Karet, 36(2), 117-126. doi:10.22302/ppk.jpk.v36i2.595.

Silins, U., & Rothwell, R. L. (1999). Spatial patterns of aerobic limit depth and oxygen diffusion rate at two peatlands drained for forestry in Alberta. Canadian Journal of Forest Research, 29(1), 53-61. doi:10.1139/x98-179.

Sundari, S., Hirano, T., Yamada, H., Kusin, K., & Limin, S. (2012). Effect of groundwater level on soil respiration in tropical peat swamp forests. Journal of Agricultural Meteorology, 68(2), 121–134. doi:10.2480/agrmet.68.2.6.

Tiemeyer, B., Albiac Borraz, E., Augustin, J., Bechtold, M., Beetz, S., Beyer, C., & Zeitz, J. (2016). High emissions of greenhouse gases from grasslands on peat and other organic soils. Global Change Biology, 22(12), 4134–4149. doi:10.1111/gcb.13303.

United States Department of Agriculture. (1999). Soil Taxonomy a basic system of soil classification making and interpreting soil surveys (2nd ed.). Washington DC, USA: U.S. Government Printing Office.

Wahyunto. (2015). Lahan gambut di Indonesia : istilah, definisi, klasifikasi, luasan, penyebaran, dan pemuthakhiran data spasial gambut. Diakses dari

Wakhid, N., Hirano, T., Okimoto, Y., Nurzakiah, S., & Nursyamsi, D. (2017). Soil carbon dioxide emissions from a rubber plantation on tropical peat. Science of The Total Environment, 581–582, 857–865. doi:10.1016/j.scitotenv.2017.01.035.

Wösten, J. H. M., Clymans, E., Page, S. E., Rieley, J. O., & Limin, S. H. (2008). Peat–water interrelationships in a tropical peatland ecosystem in Southeast Asia. CATENA, 73(2), 212-224. doi:10.1016/j.catena.2007.07.010.






Original Research Article