MITIGASI KEKERINGAN PADA PERKEBUNAN KARET (Hevea brasiliensis Müll. Arg.) MELALUI PENDEKATAN PHYTOBIOME

Authors

DOI:

https://doi.org/10.22302/ppk.wp.v39i1.663

Keywords:

Hevea brasiliensis, mitigasi, kekeringan, phytobiome

Abstract

El-Nino menimbulkan dampak musim kemarau yang berkepanjangan di wilayah Asia Tenggara termasuk Indonesia. Kekeringan yang terjadi pada saat musim kemarau dapat menurunkan produksi karet hingga 50%. Mitigasi untuk meminimalisir dampak kekeringan tersebut dapat dilakukan dengan pendekatan phytobiome. Pendekatan phytobiome diharapkan dapat meningkatkan ketahanan tanaman karet terhadap kekeringan baik dengan mekanisme drought tolerance maupun drought avoidance. Selain itu, dengan lingkungan biotik dan abiotik yang mendukung, lengas tanah juga semakin tersedia untuk tanaman. Upaya mitigasi dengan pendekatan phytobiome dilakukan secara komprehensif baik terhadap tanaman, lingkungan hidup tanaman, maupun organisme yang hidup di sekitar tanaman tersebut. Mitigasi dampak kekeringan terhadap tanaman karet dengan pendekatan phytobiome dapat dilakukan dengan perakitan dan adopsi klon-klon unggul toleran kekeringan, penggunaan root trainer untuk memperbaiki arsitektur akar, aplikasi senyawa osmoregulator, aplikasi asam humat, irigasi, penggunaan LCC sebagai mulsa, pembuatan rorak, dan inokulasi jamur mikoriza atau DSE. Penelitian tentang upaya mitigasi tersebut pada tanaman karet masih tergolong minim, sehingga diperlukan penelitian lebih lanjut agar pertumbuhan dan produksi karet tetap stabil selama terjadi kekeringan.

Author Biographies

Andi Nur Cahyo, Sembawa Research Centre, Indonesian Rubber Research Institute

Agronomy

Rudi Hari Murti, Universitas Gadjah Mada

Faculty of Agriculture, Plant Breeding

Eka Tarwaca Susila Putra, Universitas Gadjah Mada

Faculty of Agriculture, Agronomy

References

Achmad, S. R., & Putra, R. C. (2016). PENGELOLAAN LENGAS TANAH DAN LAJU PERTUMBUHAN TANAMAN KARET BELUM MENGHASILKAN PADA MUSIM KEMARAU DAN PENGHUJAN. Warta Perkaretan, 35(1), 1–10.

Al-Zalzelah, H. (2013). The effect of container type and soil substrates on growth and establishment of selected landscape trees. Scientific Papers. Series B, Horticulture, 57, 255–260.

Arancon, N. Q., Lee, S., Edwards, C. A., & Atiyeh, R. (2003). Effects of humic acids derived from cattle, food and paperwaste vermicomposts on growth of greenhouse plants. Pedobiologia, 47, 741–744.

Ardika, R., Cahyo, A. N., & Wijaya, T. (2011). Wintering and Yield Dynamics on Various Rubber Clones and Their Relationship to Soil Water Content. Indonesian Journal of Natural Rubber Research, 29(2), 102–109.

Ardika, R., & Herlinawati, E. (2014). Alternative of Rubber Planting Material Supply with Root Trainer System. Warta Perkaretan, 33(2), 73–78.

Arenas, M., Vavrina, C. S., Cornell, J. A., Hanlon, E. A., & Hochmuth, G. J. (2002). Coir as an Alternative to Peat in Media for Tomato Transplant Production. HortScience, 37(2), 309–312.

Atiyeh, R., Lee, S., Edwards, C. A., Arancon, N. Q., & Metzger, J. D. (2002). The influence of humic acids derived from earthworm-processed organic wastes on plant growth. Bioresource Technology, 84, 7–14.

Bahari, Z. A., & Samsuddin, Z. (1984). Possible usage of photosynthetic rates and drought resistance in early selection of hevea. Compte-Rendu Du Colloque. Exploitation-Physiologie et Amelioration de l’Hevea, 375. Montpellier-France.: IRCA, CIRAD.

Basumatary, N., Parkash, V., Tamuli, A. K., Saikia, A. J., & Teron, R. (2014). Arbuscular mycorrhizal inoculation affects growth and rhizospheric nutrient availability in Hevea brasiliensis (Willd. ex A. Juss.) Mull. Arg. clones. International Journal of Current Biotechnology, 2(7), 10.

Bonfante, P., & Genre, A. (2010). Mechanisms underlying beneficial plant–fungus interactions in mycorrhizal symbiosis. Nature Communications, 1(4), 1–11. https://doi.org/10.1038/ncomms1046

Bottomley, W. B. (1917). Some effects of organicpromotion substances (auxinomones) on the growth of Lemna minor in mineral cultural solutions. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character, 89(621), 481–507.

Brownell, J. R., Nordstrom, G., Marihart, J., & Jorgensen, G. (1987). Crop responses from two new leonardite extracts. Science of The Total Environment, 62, 491–499.

Cahyo, A. N., Ardika, R., Saputra, J., & Wijaya, T. (2014). ACCELERATION ON THE GROWTH OF RUBBER PLANTING MATERIALS BY USING FOLIAR APPLICATION OF HUMIC ACID. AGRIVITA Journal of Agricultural Science, 36(2), 112–119. https://doi.org/10.17503/Agrivita-2014-36-2-p112-119

Cahyo, A. N., Ardika, R., & Wijaya, T. (2011). Water Consumption and Rubber Production on Various Planting Space Arrangement System and Their Relationship with Soil Water Content. Indonesian Journal of Natural Rubber Research, 29(2), 110–117. https://doi.org/10.22302/jpk.v29i2.243

Cahyo, A. N., Sahuri, Nugraha, I. S., & Ardika, R. (2019). Cocopeat as Soil Substitute Media for Rubber (Hevea brasiliensis Müll. Arg.) Planting Material. Journal of Tropical Crop Science, 6(1), 24–29.

Cahyo, A. N., Saputra, J., Stevanus, C. T., & . S. (2016). Penggunaan Root Trainer untuk Meningkatkan Pertumbuhan Bibit Karet. Jurnal Penelitian dan Pengembangan Pertanian, 35(1), 17–24. https://doi.org/10.21082/jp3.v35n1.2016.p17-24

Carr, M. K. V. (2012). THE WATER RELATIONS OF RUBBER (Hevea brasiliensis ): A REVIEW. Experimental Agriculture, 48(02), 176–193. https://doi.org/10.1017/S0014479711000901

Chalker-Scott, L. (2007). Impact of Mulches on Landscape Plants and the Environment-A Review. Journal of Environmental Horticulture, 5(4), 239–249.

Chen, Y., & Aviad, T. (1990). Effects of humic substances on plant growth. In P. MacCarthy, C. E. Clapp, R. L. Malcolm, & P. R. Bloom (Eds.), Humic Substances in Soil and Crop Sciences: Selected Readings (pp. 161–186). Madison, WI: ASA and SSSA.

Chen, Y., De Nobili, M., & Aviad, T. (2004). Stimulatory effects of humic substances on plant growth. Soil Organic Matter in Sustainable Agriculture. Boca Raton, Florida: CRC Press.

Cochrane, T. T., & Cochrane, T. A. (2009a). Differences in the way potassium chloride and sucrose solutions effect osmotic potential of significance to stomata aperture modulation. Plant Physiology and Biochemistry, 47(3), 205–209. https://doi.org/10.1016/j.plaphy.2008.11.006

Cochrane, T. T., & Cochrane, T. A. (2009b). The vital role of potassium in the osmotic mechanism of stomata aperture modulation and its link with potassium deficiency. Plant Signaling & Behavior, 4(3), 240–243. https://doi.org/10.4161/psb.4.3.7955

Cordeiro, F. C., Santa-Catarina, C., Silveira, V., & Souza, S. R. de. (2011). Humic Acid Effect on Catalase Activity and the Generation of Reactive Oxygen Species in Corn ( Zea mays ). Bioscience, Biotechnology, and Biochemistry, 75(1), 70–74. https://doi.org/10.1271/bbb.100553

Darly, K., & Joseph, G. Root trainer for rubber. , (2014).

Departemen Pertanian. (2006). Jakarta: Subdit Pengolahan Lingkungan Direktorat Pengolahan Hasil Pertanian Ditjen PPHP.

Devakumar, A. S., Rao, G. G., Rajagopal, R., Rao, P. S., George, M. J., Vijayakumar, K. R., & Sethuraj, M. R. (1988). Studies on soil-plant-atmosphere system in Hevea: II. Seasonal effects on water relations and yield. Indian Journal of Natural Rubber Research, 1(2), 45–60.

Din, J., Khan, S. U., Ali, I., & Gurmani, A. R. (2011). Physiological and Agronomic Response of Canola Varieties to Drought Stress. The Journal of Animal & Plant Sciences, 21(1), 78–82.

Directorate General of Estate Crops. (2016). Tree Crop Estate Statistics of Indonesia 2015-2017. Retrieved from http://ditjenbun.pertanian.go.id

Elmongy, M. S., Zhou, H., Cao, Y., Liu, B., & Xia, Y. (2018). The effect of humic acid on endogenous hormone levels and antioxidant enzyme activity during in vitro rooting of evergreen azalea. Scientia Horticulturae, 227, 234–243. https://doi.org/10.1016/j.scienta.2017.09.027

Evans, M. R., & Stamps, R. H. (1996). Growth of bedding plants in sphagnum peat and coir dustbased substrates. Journal of Environmental Horticulture, 14, 187–190.

Falqueto, A. R., da Silva Júnior, R. A., Gomes, M. T. G., Martins, J. P. R., Silva, D. M., & Partelli, F. L. (2017). Effects of drought stress on chlorophyll a fluorescence in two rubber tree clones. Scientia Horticulturae, 224, 238–243. https://doi.org/10.1016/j.scienta.2017.06.019

Fang, Y., & Xiong, L. (2015). General mechanisms of drought response and their application in drought resistance improvement in plants. Cellular and Molecular Life Sciences, 72(4), 673–689. https://doi.org/10.1007/s00018-014-1767-0

Fernández-Escobar, R., Benlloch, M., Barranco, D., Duefias, A., Fernández-Escobar, R.M. Benlloch, D., Barranco, A. Duefias and J.A., & GutérrezGañán, J. A. (1996). Response of olive trees to folk application of humic substances extracted from leonardite. Scientia Horticulturae, 66, 191–200.

Fikret, Y., Manar, T., Şebnem, E., Şebnem, K., & Özlem, U. (2013). SOD, CAT, GR and APX Enzyme Activities in Callus Tissues of Susceptible and Tolerant Eggplant Varieties under Salt Stress. Research Journal of Biotechnology, 8(11), 45–51.

Gardner, F. P., Pearce, R. B., & Mitchel, R. L. (1991). Physiology of Crop Plant (Fisiologi Tanaman Budidaya, translation H. Susilo). Jakarta: UI Press.

George, S., John, J., Joseph, P., Philip, A., & Punnoose, K. I. (2005). Impact of Conservation Pits on Growth and Yield of Mature Rubber. Journal of Rubber Research, 10(1), 44–53.

Hamim, H., Violita, V., Triadiati, T., & Miftahudin, M. (2017). Oxidative Stress and Photosynthesis Reduction of Cultivated (Glycine max L.) and Wild Soybean (G. tomentella L.) Exposed to Drought and Paraquat. Asian Journal of Plant Sciences, 16(2), 65–77. https://doi.org/10.3923/ajps.2017.65.77

Herrmann, L., Bräu, L., Robin, A., Robain, H., Wiriyakitnateekul, W., & Lesueur, D. (2015). High colonization by native arbuscular mycorrhizal fungi (AMF) of rubber trees in small-holder plantations on low fertility soils in North East Thailand. Archives of Agronomy and Soil Science, 62(7), 1041–1048. https://doi.org/10.1080/03650340.2015.1110238

Herrmann, L., Lesueur, D., Bräu, L., Davison, J., Jairus, T., Robain, H., … Öpik, M. (2016). Diversity of root-associated arbuscular mycorrhizal fungal communities in a rubber tree plantation chronosequence in Northeast Thailand. Mycorrhiza, 26(8), 863–877. https://doi.org/10.1007/s00572-016-0720-5

Hutasoit, J., Hanum, C., & Ginting, J. (2015). Kadar N Tanah dan Daun serta Klorofil Karet Umur Sembilan Tahun Dengan Penempatan Mulsa Vertikal Pada Rorak. Jurnal Online Agroekoteknologi, 3(4), 1266–1270.

Ikram, A., Mahmud, A. W., Ghani, M. N., Ibrahim, M. T., & Zainal, A. B. (1992). Field nursery inoculation of Hevea brasiliensis Mueli. Arg. seedling rootstock with vesicular-arbuscular mycorrhizal (VAM) fungi. Plant and Soil, 145, 231–236.

Ingram, D. L., Henley, R. W., & Yeager, T. H. (1993). Growth media for container grown ornamental plants. University of Florida Bulletin, 241, 1–16.

Inonu, I., Budianta, D., Umar, M., Yakup, & Wiralag, A. Y. A. (2011). Rubber clone response on irrigation frequency in sand tailing medium post thin mining. Journal of Agronomy Indonesia, 39(2), 131–136.

Jafari, M., Haghighi, J. A. P., & Zare, H. (2012). Mulching impact on plant growth and production of rainfed fig orchards under drought conditions. Journal of Food, Agriculture & Environment, 10(1), 428–433.

Jessy, M. D., Mathew, M., Jacob, S., & Punnoose, K. I. (1994). Comparative evaluation of basin and drip irrigation systems of irrigation in rubber. Indian Journal Natural Rubber Research, 7(1), 51–56.

Jumpponen, A. (2001). Dark septate endophytes - are they mycorrhizal? Mycorrhiza, 11(4), 207–211. https://doi.org/10.1007/s005720100112

Karyudi. (2001). Rubber (Hevea brasiliensis) osmoregulation as the respons to water stress I : Variation between recommended, expected, and germplasm. Indonesian Journal of Natural Rubber Research, 19(1–3), 1–17.

Khanna-Chopra, R., Moinuddin, Yasudev, S., Maheswari, M., Srivastava, A., & Bahukhandi, D. (1994). K+, Osmoregulation and Drought Tolerance - An Overview. Proceeding of Indian National Science Academy, 61(1), 51–56.

Kholová, J., Hash, C. T., KoÄová, M., & Vadez, V. (2011). Does a terminal drought tolerance QTL contribute to differences in ROS scavenging enzymes and photosynthetic pigments in pearl millet exposed to drought? Environmental and Experimental Botany, 71(1), 99–106. https://doi.org/10.1016/j.envexpbot.2010.11.001

Lawlor, D. W. (2013). Genetic engineering to improve plant performance under drought: physiological evaluation of achievements, limitations, and possibilities. Journal of Experimental Botany, 64(1), 83–108.

Leach, J. E., Triplett, L. R., Argueso, C. T., & Trivedi, P. (2017). Communication in the Phytobiome. Cell, 169(4), 587–596. https://doi.org/10.1016/j.cell.2017.04.025

Leclercq, J., Martin, F., Sanier, C., Clément-Vidal, A., Fabre, D., Oliver, G., … Montoro, P. (2012). Over-expression of a cytosolic isoform of the HbCuZnSOD gene in Hevea brasiliensis changes its response to a water deficit. Plant Molecular Biology, 80(3), 255–272. https://doi.org/10.1007/s11103-012-9942-x

Lucas, W. J. (1987). Functional aspects of cells in root apices. In P. J. Gregory, J. V. Lake, & A. Rose (Eds.), Root Development and Functions (pp. 123–136). Cambridge University Press.

Luke, L. P., Mohamed Sathik, M. B., Thomas, M., Kuruvilla, L., Sumesh, K. V., & Annamalainathan, K. (2015). Quantitative expression analysis of drought responsive genes in clones of Hevea with varying levels of drought tolerance. Physiology and Molecular Biology of Plants, 21(2), 179–186. https://doi.org/10.1007/s12298-015-0288-0

Luo, L. J. (2010). Breeding for water-saving and drought-resistance rice (WDR) in China. Journal of Experimental Botany, 61(13), 3509–3517. https://doi.org/10.1093/jxb/erq185

Majewska, M. L., BÅ‚aszkowski, J., Nobis, M., Rola, K., Nobis, A., Åakomiec, D., … Zubek, S. (2015). Root-inhabiting fungi in alien plant species in relation to invasion status and soil chemical properties. Symbiosis, 65(3), 101–115. https://doi.org/10.1007/s13199-015-0324-4

Mak, S., Chinsathit, S., Pookpakdi, A., & Kasemsap, P. (2008). The Effect of Fertilizer and Irrigation on Yield and Quality of Rubber (Hevea brasiliensis) Grown in Chanthaburi Province of Thailand. Kasetsart Journal (Natural Science), 42, 226–237.

Mandyam, K., & Jumpponen, A. (2005). Seeking the elusive function of the root-colonising dark septate endophytic fungi. Studies in Mycology, 53, 173–189. https://doi.org/10.3114/sim.53.1.173

Moghadam, H. R. T. (2015). Humic acid as an Ecological Pathway to Protect Corn Plants against Oxidative Stress. Biological Forum – An International Journal, 7(1), 1704–1709.

Mullan, G. D., & White, P. J. (2001). Seedling Quality: Making informed choices. Bushcare and the Department of Conservation and Land Management.

Murtilaksono, K., Siregar, H. H., & Darmosarkoro, W. (2007). Water Balance Model in Oil Palm Plantation. Jurnal Penelitian Kelapa Sawit, 15(1), 21–35.

Muscolo, A., Bovalo, F., Gionfriddo, F., & Nardi, S. (1999). Earthworm humic matter produces auxin-like effects on Daucus carota cell growth and nitrate metabolism. Soil Biology and Biochemistry, 31, 1303–1311.

Muscolo, A., Cutrupi, S., & Nardi, S. (1998). IAA detection in humic substances. Soil Biology and Biochemistry, 30(8/9), 1199–1201.

Muthana, K. D., Meena, G. L., Bhatia, N. S., & Bhatia, O. P. (1984). Root system of desert tree species. My Forest, 3, 27–36.

Nabayi, A., Teh, C. B. S., Husni, M. H. A., Jaafar, A. H., & Isnar, M. S. (2016). Comparison of Three Irrigation Systems for the BX-1 system for Nursery Seedlings. 20, 18.

Nardi, S., Pizzeghello, D., Muscolo, A., & Vianello, A. (2002). Physiological effects of humic substances on higher plants. Soil Biology and Biochemistry, 34, 1527–1536.

Nazari, F., Faarahmand, H., Kosh-Khui, M., & Salehi, H. (2011). Effects of coir as component of potting media on growth, flowering a physiological characteristics of hyacinth (Hyacinthus orientalis L. cv. Sonbol-e-Irani). International Journal of Agriculture and Food Science, 1(2), 34–38.

Noeralam, A. S., Arsyad, S., & Iswandi. (2003). Teknik Pengendalian Aliran Permukaan yang Efektif Pada Usaha Tani Lahan Kering Belerang. Jurnal Tanah Dan Lingkungan, 5(1), 3–16.

Nugroho, Priyo Adhi, Istianto, Siagian, N., & Karyudi. (2006). Potency of Mucuna bracteata on nutrition reversion of immature period of rubber plantation. Presented at the National Workshop on Rubber Cultivation 2006, Medan.

Nugroho, Priyo Adi. (2017). PEMBANGUNAN RORAK DAN APLIKASI TANKOS DI AREAL PERKEBUNAN KARET. Pembangunan Rorak dan Aplikasi Tankos di Areal Perkebunan Karet, 14(2), 155–161.

Nusyirwan. (2014). Optimization of Sub-Optimally Land Through Planting of Mucuna bracteata. Presented at the National Conference of Suboptimal Land 2014, Palembang.

Perry, T. O. (1982). The ecology of tree roots and practical significance. Journal of Arboriculture, 8(8), 197–211.

Porras-Alfaro, A., Herrera, J., Sinsabaugh, R. L., Odenbach, K. J., Lowrey, T., & Natvig, D. O. (2008). Novel Root Fungal Consortium Associated with a Dominant Desert Grass. Applied and Environmental Microbiology, 74(9), 2805–2813. https://doi.org/10.1128/AEM.02769-07

Priyadharsini, P., Pandey, R., & Muthukumar, T. (2012). Arbuscular mycorrhizal and dark septate fungal associations in shallot (Allium cepa L. var. aggregatum) under conventional agriculture. Acta Botanica Croatica, 71(1), 159–175. https://doi.org/10.2478/v10184-011-0058-1

Putranto, R.-A., Herlinawati, E., Rio, M., Leclercq, J., Piyatrakul, P., Gohet, E., … Montoro, P. (2015). Involvement of Ethylene in the Latex Metabolism and Tapping Panel Dryness of Hevea brasiliensis. International Journal of Molecular Sciences, 16(8), 17885–17908. https://doi.org/10.3390/ijms160817885

Qin, J., Wang, X., Hu, F., & Li, H. (2010). Growth and physiological performance responses to drought stress under non-flooded rice cultivation with straw mulching. Plant, Soil and Environment, 56(No. 2), 51–59. https://doi.org/10.17221/157/2009-PSE

Rhodes, D., & Hanson, A. D. (1993). Quaternary Ammonium and Tertiary Sulfonium Compounds in Higher Plants. Annual Review of Plant Physiology and Plant Molecular Biology, 44, 357–384.

Rożek, K., Rola, K., Błaszkowski, J., & Zubek, S. (2018). Associations of root-inhabiting fungi with herbaceous plant species of temperate forests in relation to soil chemical properties. Science of The Total Environment, 649, 1573–1579. https://doi.org/10.1016/j.scitotenv.2018.08.350

Sahar, A., & Guci, H. (2016). Effect of vesicular arbuscular mycorrhiza and organic matter on growth of rubber stump (Hevea brasiliensis Muell. Arg.). International Journal of Agronomy and Agricultural Research, 9(4), 31–35.

Samarappuli, L. (1992). Some Agronomic Practices to Overcome Moisture Stress in Hevea Brasiliensis. Indian Journal of Natural Rubber Research, 5(1&2), 127–132.

Santos, S. G. dos, Silva, P. R. A. da, Garcia, A. C., Zilli, J. É., & Berbara, R. L. L. (2017). Dark septate endophyte decreases stress on rice plants. Brazilian Journal of Microbiology, 48(2), 333–341. https://doi.org/10.1016/j.bjm.2016.09.018

Saputra, J., Stevanus, C. T., & Cahyo, A. N. (2016). The Effect of El-Nino 2015 on The Rubber Plant (Hevea brasiliensis) Growth in The Experimental Field Sembawa Research Centre. Widyariset, 2(1), 37–46. https://doi.org/10.14203/widyariset.2.1.2016.37-46

Shao, H.-B., Chu, L.-Y., Jaleel, C. A., & Zhao, C.-X. (2008). Water-deficit stress-induced anatomical changes in higher plants. Comptes Rendus Biologies, 331(3), 215–225. https://doi.org/10.1016/j.crvi.2008.01.002

Siagian, N. (2001). Potency and Utilization of Mucuna bracteata as legume cover crop in rubber plantation. Warta Perkaretan, 20(1–3), 32–43.

Singh, V. P., Singh, S., Prasad, S. M., & Parihar, P. (Eds.). (2017). UV-B Radiation: From Environmental Stressor to Regulator of Plant Growth. https://doi.org/10.1002/9781119143611

Soman, T. A., & Jacob, J. (2013). Root trainer planting technique for Hevea. Presented at the Pelatihan pembuatan bibit karet dalam root trainer, Bogor.

Soman, T. A., & Saraswathyamma, C. K. (2005). Root trainer planting technique for Hevea and the initial field performance of root trainer plant. International Natural Rubber Conference 2005. Presented at the Cochin, India. Cochin, India.

Sosa-Rodriguez, T., Dupré de Boulois, H., Granet, F., Gaurel, S., Melgarejo, L.-M., Carron, M.-P., & Declerck, S. (2013). In vitro mycorrhization of the rubber tree Hevea brasiliensis Müll Arg. In Vitro Cellular & Developmental Biology - Plant, 49(2), 207–215. https://doi.org/10.1007/s11627-012-9485-5

Stamps, R. H., & Evans, M. R. (1999). Growth of Dracaena marginata and Spathiphyllum ‘Petite’ in sphagnum peat and coconut coir dust-based growing media. Journal of Environmental Horticulture, 17, 49–52.

Sukmana, S., Suwardjo, H., Abdurachman, A., & Dai, J. (1986). Prospect of Flemingia congesta Roxb. for reclamation and conservation of volcanic skeletal soils. Pemberitaan Penelitian Tanah Dan Pupuk, 4, 50–54.

Susetyo, I., Nugroho, P. A., & Stevanus, C. T. (2017). POTENCY AND MANAGEMENT OF ORGANIC MATERIALS IN RUBBER PLANTATION IN INDONESIA. Proceedings of International Rubber Conference, 752–762. Jakarta: IRRDB.

Symanczik, S., Courty, P.-E., Boller, T., Wiemken, A., & Al-Yahya’ei, M. N. (2015). Impact of water regimes on an experimental community of four desert arbuscular mycorrhizal fungal (AMF) species, as affected by the introduction of a non-native AMF species. Mycorrhiza, 25(8), 639–647. https://doi.org/10.1007/s00572-015-0638-3

Thomas, Cahyo, A. N., & Ardika, R. (2011). Anticipation and Effort to Cope With La Nina Climate Anomaly in Rubber Plantation. Sriwijaya University Agricutural Department Seminar: Role of Science and Technology on Climate Change Anticipation on The Perspective Sustainable Agriculture. Presented at the Palembang. Palembang.

Thomas, & Lasminingsih, M. (1994). Respons of some rubber clones on drought. Warta Perkaretan, 12(3), 1–4.

Treder, J. (2008). The effects of cocopeat and fertilization on the growth and fl owering of oriental lily “star gazer.†Journal of Fruit and Ornamental Plant Research, 16, 361–370.

Trevisan, S., Botton, A., Vaccaro, S., Vezzaro, A., Quaggioti, S., & Nardi, S. (2011). Humic substances affect Arabidopsis physiology by altering the expression of genes involved in primary metabolism, growth and development. Environmental and Experimental Botany, 74, 45–55.

Turner, N. C. (1986). Crop water deficits: A decade of progress. Advances in Agronomy, 39, 1–45.

Ulfa, M., Martin, E., & Waluyo, E. A. (2005). Pemanfaatan Mikoriza dalam Meningkatkan Kualitas Bibit Jenis Prioritas Sumatera Selatan. Prosiding Seminar Hasil-Hasil Penelitian Hutan Tanaman. Presented at the Seminar Hasil-hasil Penelitian Hutan Tanaman, Banyuasin.

Varanini, Z., & Pinton, R. (1995). Humic substances and plant nutrition. In U. Lüttge (Ed.), Progress in Botany (Vol. 56, pp. 97–117). Berlin: Springer.

Vergara, C., Araujo, K. E. C., Alves, L. S., Souza, S. R. de, Santos, L. A., Santa-Catarina, C., … Zilli, J. É. (2018). Contribution of dark septate fungi to the nutrient uptake and growth of rice plants. Brazilian Journal of Microbiology, 49(1), 67–78. https://doi.org/10.1016/j.bjm.2017.04.010

Vijayakumar, K. R., Dey, S. K., Chandrasekhar, T. R., Devakumar, A. S., Mohankrishna, T., Rao, P. S., & Sethuraj, M. R. (1998). Irrigation requirement of rubber trees Hevea brasiliensis in the subhumid tropics. Agricultural Water Management, 245–259.

Wang, L. (2014). Physiological and molecular responses to drought stress in rubber tree (Hevea brasiliensis Muell. Arg.). Plant Physiology and Biochemistry, 83, 243–249. https://doi.org/10.1016/j.plaphy.2014.08.012

Waseem, M., Ali, A., Tahir, M., Nadeem, M. A., Ayub, M., Tanveer, A., … Hussain, M. (2011). Mechanism of Drought Tolerance in Plant and Its Management Through Different Methods. Continental Journal of Agricultural Science, 5(1), 10–25.

Xue, L., Wang, L., Anjum, S. A., Saleem, M. F., Saeed, A., & Bilal, M. F. (2013). Gas exchange and morpho-physiological response of soybean to straw mulching under drought conditions. African Journal of Biotechnology, 12(18), 2360–2365.

Yang, C., Ellouze, W., Navarro-Borrell, A., Taheri, A. E., Klabi, R., Dai, M., … Hamel, C. (2014). Management of the Arbuscular Mycorrhizal Symbiosis in Sustainable Crop Production. In Z. M. Solaiman, L. K. Abbott, & A. Varma (Eds.), Mycorrhizal Fungi: Use in Sustainable Agriculture and Land Restoration (Vol. 41, pp. 89–118). https://doi.org/10.1007/978-3-662-45370-4_7

Yu, Y., & Assmann, S. M. (2016). The effect of NaCl on stomatal opening in Arabidopsis wild type and agb1 heterotrimeric G-protein mutant plants. Plant Signaling & Behavior, 11(2), 1–3.

Zhan, F., He, Y., Zu, Y., Li, T., & Zhao, Z. (2011). Characterization of melanin isolated from a dark septate endophyte (DSE), Exophiala pisciphila. World Journal of Microbiology and Biotechnology, 27(10), 2483–2489. https://doi.org/10.1007/s11274-011-0712-8

Downloads

Published

2020-05-21

How to Cite

Cahyo, A. N., Murti, R. H., & Putra, E. T. S. (2020). MITIGASI KEKERINGAN PADA PERKEBUNAN KARET (Hevea brasiliensis Müll. Arg.) MELALUI PENDEKATAN PHYTOBIOME. Warta Perkaretan, 39(1), 39–56. https://doi.org/10.22302/ppk.wp.v39i1.663