DAMPAK KEKERINGAN TERHADAP PROSES FISIOLOGIS, PERTUMBUHAN, DAN HASIL TANAMAN KARET (Hevea brasiliensis Müll. Arg.)
DOI:
https://doi.org/10.22302/ppk.wp.v39i1.664Keywords:
air, El-Nino, hujan, Hevea brasiliensis, kekeringanAbstract
Indonesia adalah produsen karet terbesar kedua di dunia dengan luas areal penanaman mencapai 3,66 juta ha dan produksi sebesar 3,68 juta ton karet kering pada tahun 2017.  Produktivitas perkebunan karet di Indonesia tergolong belum optimal. Salah satu penyebabnya adalah curah hujan yang rendah pada musim kemarau dan fenomena El-Nino yang menyebabkan kekeringan. Efek kekeringan adalah terjadinya defisit air pada tanaman, sehingga tekanan turgor menurun dan memicu ketidaknormalan fungsi organ tanaman. Parameter fisiologis tanaman yang dipengaruhi oleh kekeringan misalnya tekanan osmotik dan turgor, konduktansi stomata, fotosintesa, transpirasi, respirasi, dan aktivitas antioksidan. Efek kekeringan yang dominan pada proses fisiologis tanaman adalah perubahan konduktansi stomata. Menutupnya stomata ini dipicu oleh hormon asam absisat (ABA) yang diproduksi di akar dan dibawa ke daun sebagai informer stomata ketika terjadi cekaman kekeringan. Konduktansi stomata juga sangat mempengaruhi besarnya fotorespirasi. Selain itu penutupan stomata juga mengakibatkan penurunan asimilasi CO2, sehingga dalam paparan cahaya yang berlebihan, over reduksi pada pusat reaksi fotosintesa PSII terjadi dan reactive oxygen species (ROS) misalnya superoksida, hidrogen peroksida, hidroksil radikal, dan oksigen singlet terbentuk. Tanaman yang toleran kekeringan beradaptasi terhadap kondisi cekaman kekeringan secara fisiologis dengan beberapa mekanisme, diantaranya adalah melalui peningkatan produksi hormon ABA, penutupan stomata, osmoregulasi, dan produksi antioksidan. Beberapa klon karet yang relatif toleran terhadap cekaman kekeringan adalah klon RRIM 600 dan GT1. Pada akhirnya, kekeringan yang terjadi akan menghambat pertumbuhan dan menurunkan hasil tanaman.
References
Ahmad, P., Jaleel, C. A., Azooz, M. M., & Nabi, G. (2009). Generation of ROS and Non-Enzymatic Antioxidants during Abiotic Stress in Plants. Botany Research International, 2(1), 11–20.
Ahmad, P., Sarwat, M., & Sharma, S. (2008). Reactive oxygen species, antioxidants and signaling in plants. Journal of Plant Biology, 51(3), 167–173. https://doi.org/10.1007/BF03030694
Asada, K. (2006). Production and Scavenging of Reactive Oxygen Species in Chloroplasts and Their Functions. PLANT PHYSIOLOGY, 141(2), 391–396. https://doi.org/10.1104/pp.106.082040
Ayutthaya, S. I. N. (2010). Change of whole-tree transpiration of mature Hevea brasiliensis under soil and atmospheric droughts: analyze in intermittent and seasonal droughts under the framework of the hydraulic limitation hypothesis (Doctoral Thesis). Universite Blaise Pascal, France.
Azhar, A., Sathornkich, J., Rattanawong, R., & Kasemsap, P. (2013). Responses of Chlorophyll Fluorescence, Stomatal Conductance, and Net Photosynthesis Rates of Four Rubber (Hevea brasiliensis) Genotypes to Drought. Advanced Materials Research, 844, 11–14. https://doi.org/10.4028/www.scientific.net/AMR.844.11
Barry, R. G., & Chorley, R. J. (1976). Atmosphere, Weather and Climate (2nd ed.). Methuen, London: Routledge.
Boureima, S., Oukarroum, A., Diouf, M., Cisse, N., & Van Damme, P. (2012). Screening for drought tolerance in mutant germplasm of sesame (Sesamum indicum) probing by chlorophyll a fluorescence. Environmental and Experimental Botany, 81, 37–43. https://doi.org/10.1016/j.envexpbot.2012.02.015
BPS – Statistics Indonesia. (2016). Indonesian Rubber Statistics 2016. Retrieved from https://www.bps.go.id
Bréda, N., Huc, R., Granier, A., & Dreyer, E. (2006). Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Annals of Forest Science, 63(6), 625–644. https://doi.org/10.1051/forest:2006042
Buapet, P., Rasmusson, L. M., Gullström, M., & Björk, M. (2013). Photorespiration and Carbon Limitation Determine Productivity in Temperate Seagrasses. PLoS ONE, 8(12), 1–9. https://doi.org/10.1371/journal.pone.0083804
Ceulemans, R., Gabriels, R., & Impens, I. (1984). Comparative study of photosynthesis in several Hevea brasiliensis clones and Hevea species under tropical field conditions. Tropical Agriculture (Trinidad), 61(4), 273–275.
Chaves, M. M., Flexas, J., & Pinheiro, C. (2009). Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany, 103(4), 551–560. https://doi.org/10.1093/aob/mcn125
Commonwealth of Australia, Bureau of Meteorology. (2019, February 5). SOI. Retrieved February 15, 2019, from ENSO Wrap-Up website: www.bom.gov.au/climate/enso/#tabs=SOI
Directorate General of Estate Crops. (2016). Tree Crop Estate Statistics of Indonesia 2015-2017. Retrieved from http://ditjenbun.pertanian.go.id
Directorate General of Estate Crops. (2018). Tree Crop Estate Statistics of Indonesia 2017-2019. Jakarta: Secretariate of Directorate General of Estate Crops, Directorate General of Estate Crops, Ministry of Agriculture.
Evans, H. J., & Sorge, G. J. (1994). Role of mineral elements with emphasis on the univalent cations. Ann Rev Plant Physiol, 17, 47–46.
Falqueto, A. R., da Silva Júnior, R. A., Gomes, M. T. G., Martins, J. P. R., Silva, D. M., & Partelli, F. L. (2017). Effects of drought stress on chlorophyll a fluorescence in two rubber tree clones. Scientia Horticulturae, 224, 238–243. https://doi.org/10.1016/j.scienta.2017.06.019
Fang, Y., & Xiong, L. (2015). General mechanisms of drought response and their application in drought resistance improvement in plants. Cellular and Molecular Life Sciences, 72(4), 673–689. https://doi.org/10.1007/s00018-014-1767-0
Fikret, Y., Manar, T., Şebnem, E., Şebnem, K., & Özlem, U. (2013). SOD, CAT, GR and APX Enzyme Activities in Callus Tissues of Susceptible and Tolerant Eggplant Varieties under Salt Stress. Research Journal of Biotechnology, 8(11), 45–51.
Floryszak-Wieczorek, J., & Arasimowicz-Jelonek, M. (2017). The multifunctional face of plant carbonic anhydrase. Plant Physiology and Biochemistry, 112, 362–368.
Foyer, C. H., & Noctor, G. (2000). Tansley Review No. 112: Oxygen processing in photosynthesis: regulation and signalling. New Phytologist, 146(3), 359–388. https://doi.org/10.1046/j.1469-8137.2000.00667.x
Foyer, C. H., & Noctor, G. (2003). Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiologia Plantarum, 119(3), 355–364. https://doi.org/10.1034/j.1399-3054.2003.00223.x
Foyer, C. H., & Noctor, G. (2005). Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant, Cell and Environment, 28(8), 1056–1071. https://doi.org/10.1111/j.1365-3040.2005.01327.x
Gregory, P. J. (1984). Water availability and crop growth in arid regions. Outlook on Agriculture, 13(4), 208–215.
Guo, H., Sun, Y., Peng, X., Wang, Q., Harris, M., & Ge, F. (2016). Up-regulation of abscisic acid signaling pathway facilitates aphid xylem absorption and osmoregulation under drought stress. Journal of Experimental Botany, 67(3), 681–693. https://doi.org/10.1093/jxb/erv481
Halliwell, B. (2006). Reactive Species and Antioxidants. Redox Biology is a Fundamental Theme of Aerobic Life. PLANT PHYSIOLOGY, 141(2), 312–322. https://doi.org/10.1104/pp.106.077073
Hamim, H., Violita, V., Triadiati, T., & Miftahudin, M. (2017). Oxidative Stress and Photosynthesis Reduction of Cultivated (Glycine max L.) and Wild Soybean (G. tomentella L.) Exposed to Drought and Paraquat. Asian Journal of Plant Sciences, 16(2), 65–77. https://doi.org/10.3923/ajps.2017.65.77
Heidari, M. (2009). Antioxidant Activity and Osmolyte Concentration of Sorghum (Sorghum bicolor) and Wheat (Triticum aestivum) Genotypes under Salinity Stress. Asian Journal of Plant Sciences, 8(3), 240–244. https://doi.org/10.3923/ajps.2009.240.244
Hendratno, S. (2015). Analysis of Crumb Rubber SIR Market Developments. Warta Perkaretan, 34(2), 161–176. https://doi.org/10.22302/ppk.wp.v34i2.257
Indraty, I. S. (2003). The Endurance of Rubber Planting Material Clones Planted in Polybags on The Drought Condition. Indonesian Journal of Natural Rubber Research, 21(1–3), 12–24.
Kaldenhoff, R. (2012). Mechanisms underlying CO2 diffusion in leaves. Current Opinion in Plant Biology, 15(3), 276–281. https://doi.org/10.1016/j.pbi.2012.01.011
Karyudi. (2001). Rubber (Hevea brasiliensis) osmoregulation as the respons to water stress I : Variation between recommended, expected, and germplasm. Indonesian Journal of Natural Rubber Research, 19(1–3), 1–17.
Kholová, J., Hash, C. T., KoÄová, M., & Vadez, V. (2011). Does a terminal drought tolerance QTL contribute to differences in ROS scavenging enzymes and photosynthetic pigments in pearl millet exposed to drought? Environmental and Experimental Botany, 71(1), 99–106. https://doi.org/10.1016/j.envexpbot.2010.11.001
Kneebone, W. R., Kopec, D. M., & Mancino, C. F. (1992). Water Requirements and Irrigation. Turfgrass Agronomy Monograph, (32), 441–472.
Kondo, S., & Gemma, H. (n.d.). Anthocyanin Content of Some Apple Cultivars during. 7.
Kozaki, A., & Takeba, G. (1996). Photorespiration protects C3 plants from photooxidation. Nature, 384, 557–560.
Krishan, B. (2017). Assessment of drought tolerance in few clones of natural rubber (Hevea brasiliensis) under dry hot climate of Odisha, India. Journal of Experimental Biology and Agricultural Sciences, 5(1), 106–110. https://doi.org/10.18006/2017.5(1).106.110
Lara, I., & Vendrell, M. (2000). Changes in Abscisic Acid Levels, Ethylene Biosynthesis, and Protein Patterns during Fruit Maturation of `Granny Smith’ Apples. Journal of the American Society for Horticultural Science, 125(2), 183–189. https://doi.org/10.21273/JASHS.125.2.183
Lazova, G. N., Naidenova, T., & Velinova, K. (2004). Carbonic anhydrase activity and photosynthetic rate in the tree species Paulownia tomentosa Steud. Effect of dimethylsulfoxide treatment and zinc accumulation in leaves. Journal of Plant Physiology, 161(3), 295–301. https://doi.org/10.1078/0176-1617-00900
Leclercq, J., Martin, F., Sanier, C., Clément-Vidal, A., Fabre, D., Oliver, G., … Montoro, P. (2012). Over-expression of a cytosolic isoform of the HbCuZnSOD gene in Hevea brasiliensis changes its response to a water deficit. Plant Molecular Biology, 80(3), 255–272. https://doi.org/10.1007/s11103-012-9942-x
Meinke, H., & Hammer, G. L. (1995). A peanut simulation model: II. Assesing regional production potential. Agronomy Journal, 87, 1093–1099.
Møller, I. M. (2001). Plant mitochondria and oxidative anitioxidant capacity and resistance to stress : Electron transport, NADPH turnover and photoinhibition in Poplar trees. Plant Physiol., metabolism of reactive oxygen species. Annual Review of Plant Physiology and Plant Molecular Biology, 52(1), 561–591. https://doi.org/10.1146/annurev.arplant.52.1.561
Mou, W., Li, D., Bu, J., Jiang, Y., Khan, Z. U., Luo, Z., … Ying, T. (2016). Comprehensive Analysis of ABA Effects on Ethylene Biosynthesis and Signaling during Tomato Fruit Ripening. PLOS ONE, 11(4), e0154072. https://doi.org/10.1371/journal.pone.0154072
Mueller, M. J. (2004). Archetype signals in plants: the phytoprostanes. Current Opinion in Plant Biology, 7(4), 441–448. https://doi.org/10.1016/j.pbi.2004.04.001
Munns, R., James, R. A., Sirault, X. R. R., Furbank, R. T., & Jones, H. G. (2010). New phenotyping methods for screening wheat and barley for beneficial responses to water deficit. Journal of Experimental Botany, 61(13), 3499–3507. https://doi.org/10.1093/jxb/erq199
Patil, H. E., Mahatma, M. K., Patel, N. J., Bhatnagar, R., & Jadeja, G. C. (2005). DIfferential Response of Pearl Millet Hybrids to Water Stress in Relation to Antioxidant Enzymes and Proline. Indian Journal of Plant Physiology, 10(4), 344–348.
Peterhansel, C., Horst, I., Niessen, M., Blume, C., Kebeish, R., Kürkcüoglu, S., & Kreuzaler, F. (2010). Photorespiration. The Arabidopsis Book, 8, 1–24. https://doi.org/10.1199/tab.0130
Priyadarsha, P. M. (2017). Biology of Hevea rubber. New York, NY: Springer Science+Business Media.
Prochazkova, D., Sairam, R. K., Srivastava, G. C., & Singh, D. V. (2001). Oxidative stress and antioxidant activity as the basis of senescence in maize leaves. Plant Science, 161(4), 765–771. https://doi.org/10.1016/S0168-9452(01)00462-9
Rao, P. S., Saraswathyamma, C. K., & Sethuraj, M. R. (1998). Studies on the relationship between yield and meteorological parameters of para rubber tree (Hevea brasiliensis). Agricultural and Forest Meteorology, 90, 235–245.
Rao, P. S., & Vijayakumar, K. R. (1992). Climatic Requirements. In M. R. Sethuraj & N. M. Mathew (Eds.), Natural rubber: biology, cultivation, and technology. Amsterdam ; New York: Elsevier.
Rhodes, D., & Hanson, A. D. (1993). Quaternary Ammonium and Tertiary Sulfonium Compounds in Higher Plants. Annual Review of Plant Physiology and Plant Molecular Biology, 44, 357–384.
Sahuri, S., & Cahyo, A. N. (2018). Relationship between Field Water Balance with Production of BPM24 Clone. Widyariset, 4(2), 163–172.
Sanier, C., Oliver, G., Clément-Vidal, A., Fabre, D., Lardet, L., & Montoro, P. (2013). Influence of Water Deficit on the Physiological and Biochemical Parameters of in vitro Plants from Hevea brasiliensis Clone PB 260. Journal of Rubber Research, 16(1), 61–74.
Saputra, J. (2013). Analysis of the Effect of La-Nina 2010 Climate Anomaly in Sembawa Research Centre Experimental Field South Sumatera. Widyariset, 16(3), 377–384.
Saputra, J., Stevanus, C. T., & Cahyo, A. N. (2016). The Effect of El-Nino 2015 on The Rubber Plant (Hevea brasiliensis) Growth in The Experimental Field Sembawa Research Centre. Widyariset, 2(1), 37–46. https://doi.org/10.14203/widyariset.2.1.2016.37-46
Shao, H.-B., Chu, L.-Y., Jaleel, C. A., & Zhao, C.-X. (2008). Water-deficit stress-induced anatomical changes in higher plants. Comptes Rendus Biologies, 331(3), 215–225. https://doi.org/10.1016/j.crvi.2008.01.002
Silva, P. E. M., Cavatte, P. C., Morais, L. E., Medina, E. F., & DaMatta, F. M. (2013). The functional divergence of biomass partitioning, carbon gain and water use in Coffea canephora in response to the water supply: Implications for breeding aimed at improving drought tolerance. Environmental and Experimental Botany, 87, 49–57. https://doi.org/10.1016/j.envexpbot.2012.09.005
Singh, V. P., Singh, S., Prasad, S. M., & Parihar, P. (Eds.). (2017). UV-B Radiation: From Environmental Stressor to Regulator of Plant Growth. https://doi.org/10.1002/9781119143611
Suzuki, N., & Mittler, R. (2006). Reactive oxygen species and temperature stresses: A delicate balance between signaling and destruction. Physiologia Plantarum, 126(1), 45–51. https://doi.org/10.1111/j.0031-9317.2005.00582.x
Thomas, Cahyo, A. N., & Ardika, R. (2011). Anticipation and Effort to Cope With La Nina Climate Anomaly in Rubber Plantation. Sriwijaya University Agricutural Department Seminar: Role of Science and Technology on Climate Change Anticipation on The Perspective Sustainable Agriculture. Presented at the Palembang. Palembang.
Torres, M. A., & Dangl, J. L. (2005). Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Current Opinion in Plant Biology, 8(4), 397–403. https://doi.org/10.1016/j.pbi.2005.05.014
Vanderlip, R. L., Hammer, G. L., & Muchow, R. C. (1996). Assesing planting opportunities in semiarid subtropical environments. Agricultural Systems, 51, 97–122.
Velázquez-Márquez, S., Conde-MartÃnez, V., Trejo, C., Delgado-Alvarado, A., Carballo, A., Suárez, R., … Trujillo, A. R. (2015). Effects of water deficit on radicle apex elongation and solute accumulation in Zea mays L. Plant Physiology and Biochemistry, 96, 29–37. https://doi.org/10.1016/j.plaphy.2015.07.006
Vijayakumar, K. R., Chandrashekar, T. R., & Philip, V. (2000). Agroclimate. In P. J. George & C. K. Jacob (Eds.), Natural Rubber: Agromanagement and Crop Processing. Kerala: Rubber Research Institute of India.
Vijayakumar, K. R., Dey, S. K., Chandrasekhar, T. R., Devakumar, A. S., Mohankrishna, T., Rao, P. S., & Sethuraj, M. R. (1998). Irrigation requirement of rubber trees Hevea brasiliensis in the subhumid tropics. Agricultural Water Management, 245–259.
Wang, L. (2014). Physiological and molecular responses to drought stress in rubber tree (Hevea brasiliensis Muell. Arg.). Plant Physiology and Biochemistry, 83, 243–249. https://doi.org/10.1016/j.plaphy.2014.08.012
Wang, Z., Li, G., Sun, H., Ma, L., Guo, Y., Zhao, Z., … Mei, L. (2018). Effects of drought stress on photosynthesis and photosynthetic electron transport chain in young apple tree leaves. Biology Open, 7(11), bio035279. https://doi.org/10.1242/bio.035279
Waseem, M., Ali, A., Tahir, M., Nadeem, M. A., Ayub, M., Tanveer, A., … Hussain, M. (2011). Mechanism of Drought Tolerance in Plant and Its Management Through Different Methods. Continental Journal of Agricultural Science, 5(1), 10–25.
Watson, G. A. (1989). Climate and Soil. In C. C. Webster & W. J. Baulkwill (Eds.), Rubber (pp. 124–164). Longman Scientific and Technical.
Wijaya, T., & Tambunan, D. (1986). The Effect of Mulch and Irrigation Period on The Growth of AVROS 2037 Rubber Planting Material Clone. Buletin Perkebunan Rakyat, 3(1), 1–7.