PEMANFAATAN PARAMETER CHLOROPHYLL-A FLUORESCENCEUNTUK SELEKSI KLON KARET TAHAN KEKERINGAN

Authors

DOI:

https://doi.org/10.22302/ppk.wp.v40i2.811

Keywords:

Chlorophyll-a fluorescence, cekaman, fotosintesa, ketahanan kekeringan, seleksi genotip

Abstract

Chlorophyll-afluorescenceadalahperpendaran cahaya yang dilepaskan oleh klorofil untuk membuang kelebihan energi foton yang diterima dari sinar matahari pada prosesfotosintesa.Salahsatuparameterturunan dari chlorophyll-a fluorescence adalah Performance Index(PI). PI menggambarkan informasikualitatifmengenaikebugarantanaman. Pengamatan PI pada saat kondisi normal, tercekam kekeringan moderat, dan tercekam kekeringan parah memungkinkan untuk penghitungan nilai Drought Factor Index (DFI). Nilai DFI menggambarkan tingkat ketahanantanamanterhadapcekamanlingkungan, termasuk cekaman kekeringan. Semakin tinggi nilai DFI, semakin tahan tanamantersebutterhadapcekamanlingkungan dan sebaliknya. Parameter DFI telah berhasil dimanfaatkan untuk menyeleksi genotiptahancekamankekeringanpadatanaman wijen, kacang arab, barley, sawit, dan karet. Penentuan nilai DFI sangat berguna untuk kegiatan seleksi awal klon karet yang tahan terhadap cekaman kekeringan dan dapat menghemat waktu dan biaya yang harus dikeluarkanpadaprogrampemuliaantanaman karet

Author Biography

Andi Nur Cahyo, Sembawa Research Centre, Indonesian Rubber Research Institute

Agronomy

References

Baker, N. R., & Rosenqvist, E. (2004). Applications of chlorophyll fluorescence can improve crop production strategies: An examination of future possibilities. Journal of Experimental Botany, 55(403), 1607–1621. https://doi.org/10.1093/jxb/erh196

Banks, J. M. (2017). Continuous excitation chlorophyll fluorescence parameters: A review for practitioners. Tree Physiology, 37(8), 1128–1136. https://doi.org/10.1093/treephys/tpx059

Boureima, S., Oukarroum, A., Diouf, M., Cisse, N., & Van Damme, P. (2012). Screening for drought tolerance in mutant germplasm of sesame (Sesamum indicum) probing by chlorophyll a fluorescence. Environmental and Experimental Botany, 81, 37–43. https://doi.org/10.1016/j.envexpbot.2012.02.015

Cahyo, A. N., Murti, R. H., Putra, E. T. S., Nuringtyas, T. R., Fabre, D., & Montoro, P. (2021). Assessment of factual measurement times for chlorophyll-a fluorescence in rubber (Hevea brasiliensis) clones. Biodiversitas Journal of Biological Diversity, 22(6), 3470–3477. https://doi.org/10.13057/biodiv/d220656

Cahyo, A. N., Murti, R. H., Putra, E. T. S., Oktavia, F., Ismawanto, S., & Montoro, P. (2022b). Rubber Genotypes with Contrasting Drought Factor Index Revealed Different Mechanisms for Drought Resistance in Hevea brasiliensis. Plants, 11(24), 3563. https://doi.org/10.3390/plants11243563

Cahyo, A. N., Murti, R. H., Putra, E. T. S., Oktavia, F., Ismawanto, S., Mournet, P., Fabre, D., & Montoro, P. (2022a). Screening and QTLs detection for drought factor index trait in rubber (Hevea brasiliensis Müll. Arg.). Industrial Crops and Products, 190, 115894. https://doi.org/10.1016/j.indcrop.2022.115894

Çiçek, N., & Arslan, Ö. (2015). Are The Photosynthetic Performance Indexes and The Drought Factor Index Satisfactory Selection Criterion for Stress? Fresenius Environmental Bulletin, 24(11), 4190–4198.

de Raissac, M., Perez, R., & Fabre, D. (2017). New Challenges in Oil Palm Phenotyping in Relation to Climate. In A. C. Soh, S. Mayes, & J. Roberts (Eds.), Oil Palm Breeding, Genetics and Genomics (p. 446). CRC Press, Taylor & Francis Group, LLC.

Falqueto, A. R., da Silva Júnior, R. A., Gomes, M. T. G., Martins, J. P. R., Silva, D. M., & Partelli, F. L. (2017). Effects of drought stress on chlorophyll a fluorescence in two rubber tree clones. Scientia Horticulturae, 224, 238–243. https://doi.org/10.1016/j.scienta.2017.06.019

Giorio, P. (2011). Black leaf-clips increased minimum fluorescence emission in clipped leaves exposed to high solar radiation during dark adaptation. Photosynthetica, 49(3), 371–379. https://doi.org/10.1007/s11099-011-0040-0

Giorio, P., Nuzzo, V., Guida, G., & Albrizio, R. (2012). Black leaf-clips of a commercial fluorometer increased leaf temperature during dark adaptation under high solar radiation. Photosynthetica, 50(3), 467–471. https://doi.org/10.1007/s11099-012-0042-6

Govindjee. (1995). Sixty-Three Years Since Kautsky: Chlorophyll a Fluorescence. Functional Plant Biology, 22(2), 131. https://doi.org/10.1071/PP9950131

Hansatech Instrument Ltd. (2018). Handy PEA+ and Pocket PEA System Manual. Hansatech Instrument Ltd.

Jedmowski, C., Ashoub, A., Momtaz, O., & Brüggemann, W. (2015). Impact of Drought, Heat, and Their Combination on Chlorophyll Fluorescence and Yield of Wild Barley (Hordeum spontaneum). Journal of Botany, 1–9. https://doi.org/10.1155/2015/120868

Kalaji, H. M., Jajoo, A., Oukarroum, A., Brestic, M., Zivcak, M., Samborska, I. A., Cetner, M. D., ?ukasik, I., Goltsev, V., & Ladle, R. J. (2016). Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiologiae Plantarum, 38(102), 1–11. https://doi.org/10.1007/s11738-016-2113-y

Kalaji, H. M., Schansker, G., Ladle, R. J., Goltsev, V., Bosa, K., Allakhverdiev, S. I., Brestic, M., Bussotti, F., Calatayud, A., D?browski, P., Elsheery, N. I., Ferroni, L., Guidi, L., Hogewoning, S. W., Jajoo, A., Misra, A. N., Nebauer, S. G., Pancaldi, S., Penella, C., … Zivcak, M. (2014). Frequently asked questions about in vivo chlorophyll fluorescence: Practical issues. Photosynthesis Research, 122(2), 121–158. https://doi.org/10.1007/s11120-014-0024-6

Kholová, J., Hash, C. T., Ko?ová, M., & Vadez, V. (2011). Does a terminal drought tolerance QTL contribute to differences in ROS scavenging enzymes and photosynthetic pigments in pearl millet exposed to drought? Environmental and Experimental Botany, 71(1), 99–106. https://doi.org/10.1016/j.envexpbot.2010.11.001

Leclercq, J., Martin, F., Sanier, C., Clément-Vidal, A., Fabre, D., Oliver, G., Lardet, L., Ayar, A., Peyramard, M., & Montoro, P. (2012). Over-expression of a cytosolic isoform of the HbCuZnSOD gene in Hevea brasiliensis changes its response to a water deficit. Plant Molecular Biology, 80(3), 255–272. https://doi.org/10.1007/s11103-012-9942-x

Luquet, D., Clément-Vidal, A., Fabre, D., This, D., Sonderegger, N., & Dingkuhn, M. (2008). Orchestration of transpiration, growth and carbohydrate dynamics in rice during a dry-down cycle. Functional Plant Biology, 35(8), 689–704. https://doi.org/10.1071/FP08027

Oukarroum, A., Madidi, S. E., Schansker, G., & Strasser, R. J. (2007). Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and re-watering. Environmental and Experimental Botany, 60(3), 438–446. https://doi.org/10.1016/j.envexpbot.2007.01.002

Sanier, C., Oliver, G., Clément-Vidal, A., Fabre, D., Lardet, L., & Montoro, P. (2013). Influence of Water Deficit on the Physiological and Biochemical Parameters of in vitro Plants from Hevea brasiliensis Clone PB 260. Journal of Rubber Research, 16(1), 61–74.

Schansker, G., Yuan, Y., & Strasser, R. J. (2008). Chl a Fluorescence and 820 nm Transmission Changes Occurring During a Dark-to-Light Transition in Pine Needles and Pea Leaves: A Comparison. In J. F. Allen, E. Gantt, J. H. Golbeck, & B. Osmond (Eds.), Energy from the Sun (pp. 945–949). Springer.

Stirbet, A. & Govindjee. (2011). On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem II: Basics and applications of the OJIP fluorescence transient. Journal of Photochemistry and Photobiology B: Biology, 104(1–2), 236–257. https://doi.org/10.1016/j.jphotobiol.2010.12.010

Stirbet, A., Lazár, D., Kromdijk, J., & Govindjee. (2018). Chlorophyll a fluorescence induction: Can just a one-second measurement be used to quantify abiotic stress responses? Photosynthetica, 56(1), 86–104. https://doi.org/10.1007/s11099-018-0770-3

Strasser, R. J., Tsimilli-Michael, M., & Srivastava, A. (2004). Analysis of the Chlorophyll a Fluorescence Transient. In G. C. Papageorgiou & Govindjee (Eds.), Chlorophyll a Fluorescence (Vol. 19, pp. 321–362). Springer Netherlands. https://doi.org/10.1007/978-1-4020-3218-9_12

Strauss, A. J., Krüger, G. H. J., Strasser, R. J., & Heerden, P. D. R. V. (2006). Ranking of dark chilling tolerance in soybean genotypes probed by the chlorophyll a fluorescence transient O-J-I-P. Environmental and Experimental Botany, 56(2), Article 2. https://doi.org/10.1016/j.envexpbot.2005.01.011

Thomas, M., Xavier, S. M., Sumesh, K. V., Annamalainathan, K., Nair, D. B., & Mercy, M. A. (2015). Identification of Potential Drought Tolerant Hevea Germplasm Accessions using Physiological and Biochemical Parameters. Rubber Science, 28(1), 62–69.

Tsai, Y.-C., Chen, K.-C., Cheng, T.-S., Lee, C., Lin, S.-H., & Tung, C.-W. (2019). Chlorophyll fluorescence analysis in diverse rice varieties reveals the positive correlation between the seedlings salt tolerance and photosynthetic efficiency. BMC Plant Biology, 19(1), 403. https://doi.org/10.1186/s12870-019-1983-8

Zushi, K., & Matsuzoe, N. (2017). Using of chlorophyll a fluorescence OJIP transients for sensing salt stress in the leaves and fruits of tomato. Scientia Horticulturae, 219, 216–221. https://doi.org/10.1016/j.scienta.2017.03.016

Downloads

Published

2021-11-20