PENGARUH FILLER BENTONIT TERMODIFIKASI TERHADAP PERILAKU SIFAT MEKANIK EBONIT KARET ALAM

Authors

  • Asron Ferdian Falaah (Scopus ID: 56461442400) Indonesian Rubber Research Institute
  • Mochamad Chalid
  • Mohamad Irfan Fathurrohman

DOI:

https://doi.org/10.22302/ppk.wp.v41i1.815

Keywords:

karet alam, ebonit, bentonit, bahan pengisi, sifat mekanik

Abstract

Karet ebonit mempunyai keunggulan karena sifat mekanik yang tinggi, kaku, dan keras namun cenderung mudah getas. Penambahan filler clay yang mengandung bentonit dinilai dapat mengurangi sifat getas karet ebonit. Studi ini mencoba membuat karet ebonit berbasis karet alam dengan variasi bentonit sebagai filler 0, 2, 4, 6, 8, 10 phr yang dicampur sebagai masterbatch karet alam yang menggunakan surfaktan kationik, dengan karet alam jenis RSS 1, belerang 30 phr dan bahan aditif lain dengan waktu 90 menit dan suhu vulkanisasi 1600C. Uji sifat rheologi menunjukkan semakin bertambahnya masterbatch yang mengandung bentonit dan dan surfaktan kationik ditambahkan akan memberikan pelunakan pada komposit. Hasil pengujian kekerasan menunjukkan kenaikan dengan bertambahnya bentonit yang digunakan. Pengujian kuat tarik komposit b4 (4 phr bentonit) menghasilkan nilai tertinggi 41,3 N/mm2 dan modulus young 362,77 N/mm2. Hasil uji SEM menunjukkan permukaan lebih halus pada b4 dengan terbentuk agregat yang sangat kecil dibanding dengan b10 yang cenderung lebih besar ukuran agregat. komposit b4 mengindikasikan filler terdistribusi baik karena ukuran agregat kecil sehingga memberikan pengaruh terhadap kekuatan mekanik lebih tinggi dibanding dengan komposit b10 dengan agregat besar yang cenderung terjadi aglomerasi sehingga filler tidak terdistribusi dengan baik.

Author Biography

Asron Ferdian Falaah, (Scopus ID: 56461442400) Indonesian Rubber Research Institute

Scopus ID: 56461442400

IPI-ID : 598202

References

Al-Maamori, M. H., & Hamza, A. H. (2018). Effect of sulfur and Nano- carbon black on the mechanical properties of hard rubber. Journal of University of Babylon, Engineering Sciences, 26(2), 127-134.

Apinon, N., Supachai, S., Aukkaravittayapun, S., & Jantrawan, P. (2008). The effect of surfactant concentration on the interlayer structure of organoclay. Chiang Mai Journal Science, 35(1), 199-205.

Agnihotri, P., & Lad, V. N. (2020). Magnetic nanofluid : synthesis and characterization. Chemical Papers, 74, 3089-3100.

Carretero-González, J. Valentín, J. L., Arroyo, M., Saalwächter, K., & Lopez-Manchado, M. A. (2008). Natural rubber/clay nanocomposites: Influence of poly(ethylene glycol) on the silicate dispersion and local chain order of rubber network. European Polymer Journal, 44(11), 3493-3500.

Das, A., Stöckelhuber, K. W., Jurk, R., Jehnichen, D., & Heinrich, G. (2011). A general approach to rubber-montmorillonite nanocomposites: Intercalation of stearic acid. Applied Clay Science, 51(1–2), 117–125.

Fathurrohman, M. I. (2013). Pengaruh asam stearat dan organoclay terekspansi terhadap sifat dan morfologi nanokomposit karet alam/organoclay terkespandi. (Magister Tesis). Universitas Indonesia, Jakarta, Indonesia.

Fathurrohman, M. I., Rugmai, S., Hayeemasae, N., & Sahakaro, K. (2019). Dispersion and properties of natural rubber - montmorillonite nanocomposites fabricated by novel in situ organomodified and latex compounding method. Polymer Engineering and Science, 59(9), 1-10.

Fathurrohman, M. I., Rugmai, S., Hayeemasae, N., & Sahakaro, K. (2020). Better balance of silica-reinforced natural rubber tire tread compound properties by use of montmorillonite with optimum surface modifier content. Rubber Chemistry and Technology, 93(3), 548-566.

Galimberti, M., Cipolletti, V., Cioppa S., Lostritto A., & Conzatti, L. (2017). Reduction of filler networking in silica based elastomeric nanocomposites with exfoliated organo-montmorillonite. Applied Clay Science, 135, 168–175.

Gatos, K. G, & Karger-Kocsis, J. (2010). Rubber/Clay Nanocomposites: Preparation, Properties and Applications. In Thomas, S & Stephen, R. (Ed.) Rubber Nanocomposites: Preparation, Properties and Applications (pp. 170-195), Singapore: John Wiley & Sons (Asia) Pte Ltd.

George, S. C , Rajan, R., Aprem, A. S., Thomas, S. & Kim, S. (2016). The Fabrication and Properties of Natural Rubber-Clay Nanocomposites. Polymer Testing, 51, 165-73.

Hendrawan, M. A., & Purboputro, P. I. (2015, November 14 - ).Studi karakteristik sifat mekanik kompon karet dengan variasi komposisi sulfur dan carbon black sebagai bahan dasar ban luar. Paper presented at the Simposium Nasional Teknologi Terapan (SNTT), Yogyakarta.

Hernandez, M., Ezguerra, T.A., & López-Manchado, M. A. (2012). Effects of orientation on the segmental dynamics of natural rubber. Materials Science Forum, 714, 57-61

Hidayat, A. S., Arti, D. K., Wisojodharmo, L. A., Harahap, M. E., & Susanto, H. (2019). Effect of peptizer in mastication process of natural rubber / butadiene rubber blending: Rheological and mechanical properties. International Journal of Engineering & Scientific Research, 7(7), 16-22.

Hyon, J., Lawal, O., Fried, O., Thevamaran, R., Yazdi, S., Zhou, M., Veysset, D., Kooi., S. E., Jiao, Y., Hsiao, M. S., Streit, J., Vaia, R. A., Thomas, E. L.(2018). Extreme energy absorption in glassy polymer thin films by supersonic micro-projectile impact. Materialstoday, 21(8), 817 – 824.

Ismail, H., Ahmad, Z., & Mohd Ishak, Z. A. (2001). Effects of a quaternary ammonium salt on the properties of carbon-black-filled natural rubber compounds. Polymers International, 50(5), 612 – 618.

Ivanoska-Dacikj, A., Bogoeva-Gacava, G., Vali?, S., Wießner, S., & Heinrich, G. (2017). Benefits of hybrid nano-filler networking between organically modified Montmorillonite and carbon nanotubes in natural rubber: Experiments and theoretical interpretations. Applied Clay Science, 136, 192-198.

Malomo, D., Edeh, O. E., Okolo, P., Ibeh, F. C., & Adewuyi, S. O. (2019). Preparation and properties of nr based ebonite rubber suitable for use as engineering material. Evolution in Polymer Technology Journal, 2(1), 1-5.

Ngamsurat, S., Boonkerd, K., Leela-adisorn, U., & Potiyaraj, P. (2011). Curing characteristic of natural rubber filled with gypsum. Energy Procedia, 9, 452-458.

Pajarito, B. B. , Mangaccat, W. F. F., Tigue, M. R. M., & Tipton, M. T. (2017). Moisture diffusion in natural rubber/bentonite nanocomposites: effect of clay filler treatments. Defect and Diffusion Forum, 379, 124-32.

Pan, Q., Wang, B., Chen, Z., and Zhao, J. (2013). Reinforcement and antioxidantion effects of antioxidant functionalized silica in styrene-butadiene rubber. Materials & Design, 50, 558-565.

Pajtášová, M., Mi?icová, Z., Ondrušová, D., Pecušová, B., Feriancová, A., Ranik, L., & Dom?eková, S. (2017). Study of properties of fillers based on natural bentonite and their effect on the rubber compounds. Procedia Engineering. 177, 470 – 474.

Sengloyluan, K., Sahakaro, K., Wilma Dierkes, K., & Jacques Noordermeer, W. M. (2014). Silica-reinforced tire tread compounds compatibilized by using epoxidized natural rubber. European Polymer Journal, 51, 69-79.

Singh, M., & Mei, E.L.H. (2013). Surfactant and their use in latex technology. MRB Rubber Technology Developments. 13(2), 33 – 36.

Sookyung, U., Thaijaroen, W. & Nakason, C. (2014). Influence of modifying organoclay on the properties of natural rubber/organoclay nanocomposites. Journal of Composite Materials, 48(16), 1959–1970.

Thiranan, T. (2007). Utilization of various filler for rubber mat development. Master Thesis. Kasetsart University, Thailand.

Winya, N, & Pittayaprasertkul, N. (2015). SiO2 Reinforcement of Mechanical Properties for Ebonite from Natural Rubber. International Journal of Chemical Engineering and Applications, 6(3), 169-172.

Downloads

Published

2022-07-28

Issue

Section

Original Research Article