MINI REVIEW HIDROGENASI KARET ALAM

Authors

  • dody andi winarto BRIN
  • Mochamad Chalid
  • Chandra Liza
  • Mochamad Irfan Fathurrohman

DOI:

https://doi.org/10.22302/ppk.wp.v41i1.868

Keywords:

karet alam, hidrogenasi , derajat hidrogenasi, ketahanan terhadap lingkungan

Abstract

Karet alam merupakan komoditas penting yang berperan sebagai bahan baku untuk berbagai aplikasi yang membutuhkan kekuatan tarik yang tinggi, fleksibilitas, daya rekat, ketahanan terhadap suhu rendah, ketahanan kikis, dan ketahanan terhadap air. Namun karet alam murni mempunyai kelemahan karena mengandung ikatan rangkap dua (C=C) yang menjadikan karet alam mempunyai ketahanan yang kurang baik terhadap oksidasi, panas, ozon dan lingkungan. Modifikasi karet alam berpotensi untuk menanggulangi masalah tersebut. Hidrogenasi merupakan modifikasi kimia untuk mengurangi ikatan rangkap dua tersebut yang dapat dilakukan dengan penambahan hidrogen. Proses hidrogenasi dilakukan dengan menggunakan katalis dan dapat dilakukan dengan donor hidrogen yaitu senyawa diimida pada kondisi yang relatif ramah. Keberhasilan hidrogenasi diukur dengan derajat hidrogenasi melalui beberapa metode. Dari penelusuran yang dilakukan, karet alam terhidrogenasi mempunyai prospek yang baik untuk diterapkan, namun hingga saat ini belum ada industrialisasi yang masif dalam memproduksinya.

References

Andoko, E. (2019). Overview of Indonesian Current Issue and Government Strategy on the Rubber Commodity.

Arayapranee, W., & Rempel, G. L. (2009). Synthesis and mechanical properties of diimide-hydrogenated natural rubber vulcanizates. Journal of applied polymer science, 114(6), 4066-4075. doi:10.1002/app.31132

Chen, D., Shao, H., Yao, W., & Huang, B. (2013). Fourier Transform Infrared Spectral Analysis of Polyisoprene of a Different Microstructure. International Journal of Polymer Science, 2013, 937284. doi:10.1155/2013/937284

Cifriadi, A., Chalid, M., & Puspitasari, S. (2017). Characterization of hydrogenated natural rubber synthesized by diimide transfer hydrogenation. International Journal of Technology, 8(3), 448-457.

Corey, E., Pasto, D., & Mock, W. (1961). Chemistry of diimide. II. Stereochemistry of hydrogen transfer to carbon-carbon multiple bonds. Journal of the American Chemical Society, 83(13), 2957-2958.

Crabtree, R. (1979). Iridium compounds in catalysis. Accounts of Chemical Research, 12(9), 331-337. doi:10.1021/ar50141a005

Dyson, P. J., & Jessop, P. G. (2016). Solvent effects in catalysis: rational improvements of catalysts via manipulation of solvent interactions. Catalysis Science & Technology, 6(10), 3302-3316. doi:10.1039/C5CY02197A

Gan, S. N., Subramaniam, N., & Yahya, R. (1996). Hydrogenation of natural rubber using nickel 2-ethylhexanoate catalyst in combination with triisobutylaluminum. Journal of applied polymer science, 59(1), 63-70. doi:10.1002/(SICI)1097-4628(19960103)59:1<63::AID-APP10>3.0.CO;2-9.

Gumbira-Sa’id, E., & Rahman, N., Febriyanti, L. (2005). Pengaruh hidrogenasi dalam fasa lateks pada karet alam hevea brasiliensis. Jurnal Teknologi Industri Pertanian, 14(3), 80-86.

Ha, N. T., Kaneda, K., Naitoh, Y., Fukuhara, L., Kosugi, K., & Kawahara, S. (2015). Preparation and graft-copolymerization of hydrogenated natural rubber in latex stage. Journal of Applied Polymer Science, 132(34). doi:10.1002/app.42435

Ha, N. T., Kosugi, K., Kawahara, S., & Nghia, P. (2016). Mechanism of heterogeneous Hydrogenation of natural Rubber in Latex. KGK Kautschuk Gummi Kunststoffe, 69, 71-76.

Hahn, S. F. (1992). An improved method for the diimide hydrogenation of butadiene and isoprene containing polymers. Journal of Polymer Science Part A: Polymer Chemistry, 30(3), 397-408. doi:10.1002/pola.1992.080300307

Harwood, H. J., Russell, D. B., Verthe, J. J., & Zymonas, J. (1973). Diimide as a reagent for the hydrogenation of unsaturated polymers. Die Makromolekulare Chemie: Macromolecular Chemistry and Physics, 163(1), 1-12.

He, Y., Daniels, E. S., Klein, A., & El-Aasser, M. S. (1997). Hydrogenation of styrene-butadiene rubber (SBR) latexes. Journal of applied polymer science, 64(10), 2047-2056. doi:10.1002/(SICI)1097-4628(19970606)64:10<2047::AID-APP19>3.0.CO;2-3

Idris, M. S. F., Yusoff, S. F. M., & Mokhtar, W. (2019). New approach on the modification of liquid natural rubber production using microwave technique. Sains Malaysiana, 48(7), 1433-1438.

Ikeda, Y., Phinyocheep, P., Kittipoom, S., Ruancharoen, J., Kokubo, Y., Morita, Y., Hijikata, K., & Kohjiya, S. (2008). Mechanical characteristics of hydrogenated natural rubber vulcanizates. Polymers for Advanced Technologies, 19(11), 1608-1615.

Inoue, S., & Nishio, T. (2007). Synthesis and properties of hydrogenated natural rubber. Journal of Applied Polymer Science, 103(6), 3957-3963.

Jamaluddin, N., Yusof, M. J. M., Abdullah, I., & Yusoff, S. F. M. (2016). Synthesis, characterization, and properties of hydrogenated liquid natural rubber. Rubber Chemistry and Technology, 89(2), 227-239.

Kim, D. Y., Park, J. W., Lee, D. Y., & Seo, K. H. (2020). Correlation between the crosslink characteristics and mechanical properties of natural rubber compound via accelerators and reinforcement. Polymers, 12(9). 1- 14. doi:10.3390/polym12092020

Kurian, T., & Mathew, N. M. (2011). Natural Rubber: Production, Properties and Applications. In S. Kalia & L. Averous (Ed.), Biopolymers: Biomedical and Environmental Applications (1st Print ed.). Salem, Massachusetts : Wiley Online Library.

Lin, X. (2005). Hydrogenation of unsaturated polymers in latex form. (Doctoral Disertasi.). University of Waterloo, Ontario, Canada.

Lin, X., Pan, Q., & Rempel, G. L. (2004). Hydrogenation of nitrile-butadiene rubber latex with diimide. Applied Catalysis A: General, 276(1-2), 123-128.

Mahittikul, A., Prasassarakich, P., & Rempel, G. (2007a). Diimide hydrogenation of natural rubber latex. Journal of applied polymer science, 105(3), 1188-1199.

Mahittikul, A., Prasassarakich, P., & Rempel, G. (2007b). Noncatalytic hydrogenation of natural rubber latex. Journal of Applied Polymer Science, 103(5), 2885-2895.

Mahittikul, A., Prasassarakich, P., & Rempel, G. L. (2009). Hydrogenation of natural rubber latex in the presence of [Ir (cod)(PCy3)(py)] PF6. Journal of Molecular Catalysis A: Chemical, 297(2), 135-141.

Mango, L., & Lenz, R. (1973). Hydrogenation of unsaturated polymers with diimide. Die Makromolekulare Chemie: Macromolecular Chemistry and Physics, 163(1), 13-36.

Nakason, C., & Pichaiyut, S. (2022). Conductive natural rubber composites based on carbon nanotubes and its hybrid filler: a short review. Journal Mineral and Material Science, 3, 1035.

Ngudsuntear, K., Limtrakul, S., Vatanatham, T., & Arayapranee, W. (2022). Mechanical and aging properties of hydrogenated epoxidized natural rubber and its lifetime prediction. ACS Omega, 7(41), 36448-36456. doi:10.1021/acsomega.2c04225

Parker, D. K., Roberts, R. F., & Schiessl, H. W. (1992). A new process for the preparation of highly saturated nitrile rubber in latex form. Rubber Chemistry and Technology, 65(1), 245-258. doi:10.5254/1.3538604

Phinyocheep, P. (2014). Chemical modification of natural rubber (NR) for improved performance. In S.Kohjiya & Y. Ikeda (Ed.), Chemistry, manufacture and applications of natural rubber (pp. 68-118). Sawston, UK : Woodhead Publishing Limited.

Phinyocheep, P., Pasiri, S., & Tavichai, O. (2003). Diimide hydrogenation of isoprene–styrene diblock copolymers. Journal of applied polymer science, 87(1), 76-82.

Piya-areetham, P., Prasassarakich, P., & Rempel, G. L. (2013). Organic solvent-free hydrogenation of natural rubber latex and synthetic polyisoprene emulsion catalyzed by water-soluble rhodium complexes. Journal of Molecular Catalysis A: Chemical, 372, 151-159.

Rylander, P. N. (1985). Hydrogenation methods. London, UK: Academic Press.

Saengdee, L., Phinyocheep, P., & Daniel, P. (2020). Chemical modification of natural rubber in latex stage for improved thermal, oil, ozone and mechanical properties. Journal of Polymer Research, 27(9), 275. doi:10.1007/s10965-020-02246-7

Samran, J. (2005). A study of non-catalytic hydrogenation of natural rubber. (Doctoral Disertasi.). Université du Maine.,Le Mans, France.

Samran, J., Phinyocheep, P., Daniel, P., Derouet, D., & Buzare, J. Y. (2004). Spectroscopic study of di?imide hydrogenation of natural rubber. Macromolecular Symposia, 216(1), 131-144. doi:10.1002/masy.200451214.

Schulz, D., Turner, S., & Golub, M. (1982). Recent advances in the chemical modification of unsaturated polymers. Rubber Chemistry and Technology, 55(3), 809-859.

Singha, N. K., De, P., & Sivaram, S. (1997). Homogeneous catalytic hydrogenation of natural rubber using RhCl (PPh3) 3. Journal of applied polymer science, 66(9), 1647-1652.

Taksapattanakul, K. (2016). Thermoplastic Vulcanizates Based on Hydrogenated Natural Rubber/Polypropylene Blends (Doctoral dissertation).Polymer Technology, Prince of Sonkla University, Pattani, Thailand.

Van Tamelen, E., Dewey, R., Lease, M., & Pirkle, W. (1961). Selectivity and mechanism of diimide reductions. Journal of the American Chemical Society, 83(20), 4302-4302.

Veni, B., & Ma'zam, M. (2010). Hydrogenated natural rubber from different types of preserved latex. Journal of Rubber Research, 13(2), 103-109.

Wang, H., Yang, L., & Rempel, G. L. (2013). Homogeneous hydrogenation art of nitrile butadiene rubber: a review. Polymer Reviews, 53(2), 192-239.

Wideman, L. G. (1984). Process for hydrogenation of carbon-carbon double bonds in an unsaturated polymer in latex form. In: Google Patents.

Winters, R., Heinen, W., Verbruggen, M. A. L., Lugtenburg, J., van Duin, M., & de Groot, H. J. M. (2002). Solid-State 13C NMR study of accelerated-sulfur-vulcanized 13C-labeled ENB?EPDM. Macromolecules, 35(5), 1958-1966. doi:10.1021/ma001716h

Yuningtyas, C. V., Hakim, D. B., & Novianti, T. (2019). Integrasi pasar karet alam indonesia dengan pasar dunia. Jurnal Penelitian Karet, 139-150.

Zheng, T., Zheng, X., Zhan, S., Zhou, J., & Liao, S. (2021). Study on the ozone aging mechanism of Natural Rubber. Polymer Degradation and Stability, 186, 109514. doi:10.1016/j.polymdegradstab.2021.109514

Zuhdi, F. (2021). The Indonesian natural rubber export competitiveness in global market. International Journal of Agriculture System, 8(2), 130-139.

Downloads

Published

2022-07-28