PENTINGNYA APLIKASI MARKER-ASSISTED SELECTION DALAM SELEKSI KLON KARET TOLERAN KEKERINGAN
DOI:
https://doi.org/10.22302/ppk.wp.v42i2.939Keywords:
antioksidan, gen, Hevea brasiliensis, lokus sifat kuantitatif, spesises oksigen reaktifAbstract
Seleksi klon karet toleran kekeringan sangat mendesak untuk dilakukan karena pada masa yang akan datang diperkirakan kejadian fenomena kekeringan sebagai dampak pemanasan global akan lebih sering terjadi. Untuk melaksanakan hal ini, terdapat satu masalah, yaitu kegiatan pemuliaan tanaman karet dengan metode yang konvensional membutuhkan waktu sekitar 35 hingga 40 tahun karena tanaman karet adalah tanaman tahunan. Salah satu solusi untuk mengatasi masalah ini adalah dengan memanfaatkan metode Marker-Assisted Selection (MAS). MAS adalah metode seleksi tanaman yang memanfaatkan marka DNA yang bertautan dengan lokus target sebagai alat untuk menduga fenotipe tanaman yang diinginkan oleh pemulia tanaman. Untuk melaksanakan metode ini diperlukan penentuan QTL dan menganalisis gen-gen dalam QTL yang terasosiasi dengan parameter-parameter toleransi kekeringan pada tanaman karet, misalnya kandungan ROS (Reactive Oxygen Species), aktifitas enzim SOD (Superoksida Dismutase), POD (Peroksidase), CAT (Catalase), kandungan asam absisat (ABA), asam askorbat, tekanan turgor sel, kandungan prolin, laju transpirasi, bukaan stomata, electrolyte leakage, tekanan osmosis sel daun, kadar air daun relatif, dan DFI (Drought Factor Index). Apabila marker yang diperlukan dalam metode MAS sudah selesai diidentifikasi dan divalidasi, diharapkan metode MAS ini dapat diadopsi untuk memangkas durasi waktu pemuliaan tanaman karet konvensional yang memerlukan waktu antara 35-40 tahun menjadi kurang dari satu tahun. Tulisan ini bertujuan untuk mengulas parameter fisiologis tanaman yang terasosiasi dengan sifat toleransi kekeringan serta pentingnya metode MAS dalam seleksi klon karet toleran kekeringan.
References
Ahmad, P., Jaleel, C. A., Azooz, M. M., & Nabi, G. (2009). Generation of ros and non-enzymatic antioxidants during abiotic stress in plants. Botany Research International, 2(1), 11–20.
Ahmad, P., Sarwat, M., & Sharma, S. (2008). Reactive oxygen species, antioxidants and signaling in plants. Journal of Plant Biology, 51(3), 167–173. https://doi.org/10.1007/BF03030694
Akram, N. A., Shafiq, F., & Ashraf, M. (2017). Ascorbic acid-a potential oxidant scavenger and its role in plant development and abiotic stress tolerance. Frontiers in Plant Science, 8(613), 1–17.
An, Z., Zhao, Y., Zhang, X., Huang, X., Hu, Y., Cheng, H., Li, X., & Huang, H. (2019). A high-density genetic map and QTL mapping on growth and latex yield-related traits in Hevea brasiliensis Müll.Arg. Industrial Crops and Products, 132, 440–448. doi: 10.1016/j.indcrop.2019.03.002.
Botstein, D., White, R. L., Skolnick, M., & Davis, R. W. (1980). Construction of a Genetic Linkage Map in Man Using Restriction Fragment Length Polymorphisms. American Society of Human Genetics, 32, 314–331.
Boureima, S., Oukarroum, A., Diouf, M., Cisse, N., & Van Damme, P. (2012). Screening for drought tolerance in mutant germplasm of sesame (Sesamum indicum) probing by chlorophyll a fluorescence. Environmental and Experimental Botany, 81, 37–43. doi: 10.1016/j.envexpbot.2012.02.015.
Cahyo, A. N., Murti, R. H., Putra, E. T. S., Oktavia, F., Ismawanto, S., & Montoro, P. (2022a). Rubber Genotypes with Contrasting Drought Factor Index Revealed Different Mechanisms for Drought Resistance in Hevea brasiliensis. Plants, 11(24), 3563. doi: 10.3390/plants11243563.
Cahyo, A. N., Murti, R. H., Putra, E. T. S., Oktavia, F., Ismawanto, S., Mournet, P., Fabre, D., & Montoro, P. (2022b). Screening and QTLs detection for drought factor index trait in rubber (Hevea brasiliensis Müll. Arg.). Industrial Crops and Products, 190, 115894. doi:10.1016/j.indcrop.2022.115894.
Ceulemans, R., Gabriels, R., & Impens, I. (1984). Comparative study of photosynthesis in several hevea brasiliensis clones and hevea species under tropical field conditions. Tropical Agriculture (Trinidad), 61(4), 273–275.
Chaves, M. M., Flexas, J., & Pinheiro, C. (2009). Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Annals of Botany, 103(4), 551–560. doi: 10.1093/aob/mcn125.
Chye, M.-L., & Tan, C.-T. (1992). Isolation and nucleotide sequence of a cDNA clone encoding the beta subunit of mitochondrial ATP synthase from Hevea brasiliensis. Plant Molecular Biology, 18(3), 611-612. doi: 10.1007/BF00040680.
Çiçek, N., & Arslan, Ö. (2015). Are the photosynthetic performance indexes and the drought factor index satisfactory selection criterion for stress? Fresenius Environmental Bulletin, 24(11), 4190–4198.
Clément-Demange, A., Prapan, K., Ratanawong, R., & Teerawatanasuk, K. (2006, June 1-2). Molecular genetic markers and rubber breeding in Thailand 2 – Field study of the family RRIM600 x PB217 for QTL identification. Tulisan disajikan pada The Conference of Thai-Franch Rubber Cooperation 2005-2008: “Towards the Improvement of Rubber Tree Productivity". Bangkok
Collard, B. C. Y., & Mackill, D. J. (2008). Marker-assisted selection: An approach for precision plant breeding in the twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1491), 557–572. doi:10.1098/rstb.2007.2170.
de Raissac, M., Perez, R., & Fabre, D. (2017). New challenges in oil palm phenotyping in relation to climate. In A. C. Soh, S. Mayes, & J. Roberts (Ed.), Oil Palm Breeding, Genetics and Genomics (p. 446). Abingdon , UK : CRC Press, Taylor & Francis Group, LLC.
Deng, L. H., Luo, M.W., Zhang, C.F., & Zeng, H. C. (2012). Extraction of high-quality RNA from rubber tree leaves. Bioscience, Biotechnology, and Biochemistry, 76(7), 1394–1396. doi: 10.1271/bbb.120014.
Dionisio-Sese, M. L., & Tobita, S. (1998). Antioxidant responses of rice seedlings to salinity stress. Plant Science, 135(1), Article 1. doi: 10.1016/S0168-9452(98)00025-9.
Falqueto, A. R., da Silva Júnior, R. A., Gomes, M. T. G., Martins, J. P. R., Silva, D. M., & Partelli, F. L. (2017). Effects of drought stress on chlorophyll a fluorescence in two rubber tree clones. Scientia Horticulturae, 224, 238–243. doi: 10.1016/j.scienta.2017.06.019.
Fikret, Y., Manar, T., ?ebnem, E., ?ebnem, K., & Özlem, U. (2013). SOD, CAT, GR and APX enzyme activities in callus tissues of susceptible and tolerant eggplant varieties under salt stress. Research Journal of Biotechnology, 8(11), 45–51.
Foyer, C. H., & Noctor, G. (2000). Tansley review no. 112: oxygen processing in photosynthesis: regulation and signalling. New Phytologist, 146(3), 359–388. doi : 10.1046/j.1469-8137.2000.00667.x
Foyer, C. H., & Noctor, G. (2003). Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiologia Plantarum, 119(3), Article 3. doi: 10.1034/j.1399-3054.2003.00223.x.
Geldermann, H. (1976). Investigations on inheritance of quantitative characters in animals by gene markers ii. expected effects. Theoretical and Applied Genetics, 47(1), 1–4. doi : 10.1007/BF00277397.
Ghimire, K. H., Quiatchon, L. A., Vikram, P., Swamy, B. P. M., Dixit, S., Ahmed, H., Hernandez, J. E., Borromeo, T. H., & Kumar, A. (2012). Identification and mapping of a QTL (qDTY1.1) with a consistent effect on grain yield under drought. Field Crops Research, 131, 88–96. doi: 10.1016/j.fcr.2012.02.028.
Halliwell, B. (2006). Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiology, 141(2), 312–322. doi : 10.1104/pp.106.077073.
Hamim, H., Violita, V., Triadiati, T., & Miftahudin, M. (2017). Oxidative stress and photosynthesis reduction of cultivated (glycine max l.) And wild soybean (g. Tomentella l.) Exposed to drought and paraquat. Asian Journal of Plant Sciences, 16(2), 65–77. doi: 10.3923/ajps.2017.65.77.
Heidari, M. (2009). Antioxidant activity and osmolyte concentration of sorghum (sorghum bicolor) and wheat (triticum aestivum) genotypes under salinity stress. Asian Journal of Plant Sciences, 8(3), 240–244. doi:10.3923/ajps.2009.240.244.
Indraty, I. S. (2003). The endurance of rubber planting material clones planted in polybags on the drought condition. Indonesian Journal of Natural Rubber Research, 21(1–3), 12–24. Intergovernmental Panel on Climate Change . (2018). Summary for Policymakers.
In V. Masson-Delmotte, P. Zhai, H. O. Pörtner, D. Roberts, J. Skea, P. R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J. B. R. Matthews, Y. Chen, X. Zhou, M. I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, & T. Waterfield (Ed.), Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty (p. 32). Geneva, Switzerland : World Meteorological Organization.
Kalaji, H. M., Jajoo, A., Oukarroum, A., Brestic, M., Zivcak, M., Samborska, I. A., Cetner, M. D., ?ukasik, I., Goltsev, V., & Ladle, R. J. (2016). Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiologiae Plantarum, 38(102), 1–11. doi: 10.1007/s11738-016-2113-y.
Karnatam, K. S., Jaganathan, D., Dilip, K. R., Boopathi N, M., & Muthurajan, R. (2020). Shortlisting putative candidate genes underlying qDTY1.1, a major effect drought tolerant QTL in rice (Oryza sativa L.). Electronic Journal of Plant Breeding, 11(03), 916–924. doi: 10.37992/2020.1103.149
Karyudi. (2001). Osmoregulasi tanaman karet sebagai respons terhadap cekaman air I: variasi diantara klon anjuran, harapan dan plasma nutfah. Indonesian Journal of Natural Rubber Research, 19(1–3), 1-17.
Kataria, S. (2017). Oxidative Stress and Antioxidative Defence System in Plants in Response to UV?B Stress. In V. P. Singh, S. Singh, S. M. Prasad, & P. Parihar (Ed.), UV-B Radiation: From Environmental Stressor to Regulator of Plant Growth (1st ed., pp. 99–122). New Jersey, USA : John Wiley & Sons, Ltd.
Kearsey, M. J. (1998). The principles of QTL analysis (a minimal mathematics approach). Journal of Experimental Botany, 49(327), 1619–1623.
Kholová, J., Hash, C. T., Ko?ová, M., & Vadez, V. (2011). Does a terminal drought tolerance QTL contribute to differences in ROS scavenging enzymes and photosynthetic pigments in pearl millet exposed to drought?. Environmental and Experimental Botany, 71(1), 99–106. doi: 10.1016/j.envexpbot.2010.11.001.
Kim, T.-H., Hur, Y.-J., Han, S.-I., Cho, J.-H., Kim, K.-M., Lee, J.-H., Song, Y.-C., Kwon, Y.-U., & Shin, D. (2017). Drought-tolerant QTL qVDT11 leads to stable tiller formation under drought stress conditions in rice. Plant Science, 256, 131–138. doi: 10.1016/j.plantsci.2016.11.008.
Krishan, B. (2017). Assessment of drought tolerance in few clones of natural rubber (Hevea brasiliensis) under dry hot climate of Odisha, India. Journal of Experimental Biology and Agricultural Sciences, 5(1), 106–110. doi: 10.18006/2017.5(1).106.110.
Kuruvilla, L., Sathik, M. B. M., Thomas, M., Luke, L. P., Sumesh, K. V., & Annamalainathan, K. (2016). Expression of miRNAs of Hevea brasiliensis under drought stress is altered in clones with varying levels of drought tolerance. Indian Journal of Biotechnology, 15(2), 153-160.
Leclercq, J., Martin, F., Sanier, C., Clément-Vidal, A., Fabre, D., Oliver, G., Lardet, L., Ayar, A., Peyramard, M., & Montoro, P. (2012). Over-expression of a cytosolic isoform of the HbCuZnSOD gene in Hevea brasiliensis changes its response to a water deficit. Plant Molecular Biology, 80(3), 255-272. doi: 10.1007/s11103-012-9942-x.
Liu, J.-P., Zhuang, Y.-F., Guo, X.-L., & Li, Y.-J. (2016). Molecular mechanism of ethylene stimulation of latex yield in rubber tree (Hevea brasiliensis) revealed by de novo sequencing and transcriptome analysis. BMC Genomics, 17(1), 257. doi: 10.1186/s12864-016-2587-4.
Luke, L. P., Sathik, M. B. M., Thomas, M., Kuruvilla, L., Sumesh, K. V., & Annamalainathan, K. (2015). Quantitative expression analysis of drought responsive genes in clones of Hevea with varying levels of drought tolerance. Physiology and Molecular Biology of Plants, 21(2), 179-186. doi: 10.1007/s12298-015-0288-0.
Mai, J., Herbette, S., Vandame, M., Kositsup, B., Kasemsap, P., Cavaloc, E., Julien, J.-L., Améglio, T., & Roeckel-Drevet, P. (2009). Effect of chilling on photosynthesis and antioxidant enzymes in Hevea brasiliensis Muell. Arg. Trees, 23(4), 863–874. doi: 10.1007/s00468-009-0328-x.
Mazid, M., Khan, T. A., Khan, Z. H., Quddusi, S., & Mohammad, F. (2011). Occurrence, Biosynthesis and Potentialities of Ascorbic Acid in Plants. International Journal of Plant, Animal and Environmental Sciences, 1(2), 167–184.
Miao, Z., & Gaynor, J. J. (1993). Molecular cloning, characterization and expression of Mn-superoxide dismutase from the rubber tree (Hevea brasiliensis). Plant Molecular Biology, 23(2), 267–277. doi: 10.1007/BF00029003.
Møller, I. M. (2001). Plant mitochondria and oxidative anitioxidant capacity and resistance to stress: electron transport, nadph turnover and photoinhibition in poplar trees. Plant physiol., metabolism of reactive oxygen species. Annual Review of Plant Physiology and Plant Molecular Biology, 52(1), 561-591. doi: 10.1146/annurev.arplant.52.1.561.
Mueller, M. J. (2004). Archetype signals in plants: The phytoprostanes. Current Opinion in Plant Biology, 7(4), 441–448. doi: 10.1016/j.pbi.2004.04.001.
Oukarroum, A., Madidi, S. E., Schansker, G., & Strasser, R. J. (2007). Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and re-watering. Environmental and Experimental Botany, 60(3), 438–446. doi: 10.1016/j.envexpbot.2007.01.002.
Patil, H. E., Mahatma, M. K., Patel, N. J., Bhatnagar, R., & Jadeja, G. C. (2005). Differential response of pearl millet hybrids to water stress in relation to antioxidant enzymes and proline. Indian Journal of Plant Physiology, 10(4), 344–348.
Pootakham, W., Shearman, J. R., & Tangphatsornruang, S. (2020). Development of Molecular Markers in Hevea brasiliensis for Marker-Assisted Breeding. In M. Matsui & K.-S. Chow (Ed.), The Rubber Tree Genome (pp. 67–79). New York, USA : Springer International Publishing.
Price, A. H., Cairns, J. E., Horton, P., Jones, H. G., & Griffiths, H. (2002). Linking drought?resistance mechanisms to drought avoidance in upland rice using a QTL approach: Progress and new opportunities to integrate stomatal and mesophyll responses. Journal of Experimental Botany, 53(371), 989-1004. doi: 10.1093/jexbot/53.371.989.
Priyadarshan, P. M. (2017). Biology of Hevea Rubber. Berlin , Germany : Springer Science+Business Media.
Prochazkova, D., Sairam, R. K., Srivastava, G. C., & Singh, D. V. (2001). Oxidative stress and antioxidant activity as the basis of senescence in maize leaves. Plant Science, 161(4), 765–771. doi: 10.1016/S0168-9452(01)00462-9.
Punchkhon, C., Plaimas, K., Buaboocha, T., Siangliw, J. L., Toojinda, T., Comai, L., De Diego, N., Spíchal, L., & Chadchawan, S. (2020). Drought-tolerance gene identification using genome comparison and co-expression network analysis of chromosome substitution lines in rice. Genes, 11(10), 1197. doi:10.3390/genes11101197.
Rizhsky, L., Liang, H., Shuman, J., Shulaev, V., Davletova, S., & Mittler, R. (2004). When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiology, 134(4), 1683–1696. doi: 10.1104/pp.103.033431.
Sanier, C., Oliver, G., Clément-Vidal, A., Fabre, D., Lardet, L., & Montoro, P. (2013). Influence of water deficit on the physiological and biochemical parameters of in vitro plants from Hevea brasiliensis clone PB 260. Journal of Rubber Research, 16(1), 61–74.
Santos, J. O. dos, Oliveira, L. E. M. de, Souza, T. de, Lopes, G. M., Coelho, V. T., & Gomes, M. P. (2019). Physiological mechanisms responsible for tolerance to, and recuperation from, drought conditions in four different rubber clones. Industrial Crops and Products, 141, 111714. doi:10.1016/j.indcrop.2019.111714.
Shinozaki, K., Yamaguchi-Shinozaki, K., & Seki, M. (2003). Regulatory network of gene expression in the drought and cold stress responses. Current Opinion in Plant Biology, 6(5), 410–417. doi.org/10.1016/S1369-5266(03)00092-X
Silva, P. E. M., Cavatte, P. C., Morais, L. E., Medina, E. F., & DaMatta, F. M. (2013). The functional divergence of biomass partitioning, carbon gain and water use in coffea canephora in response to the water supply: implications for breeding aimed at improving drought tolerance. Environmental and Experimental Botany, 87, 49–57. doi: 10.1016/j.envexpbot.2012.09.005.
Stirbet, A., Lazár, D., Kromdijk, J., & Govindjee. (2018). Chlorophyll a fluorescence induction: can just a one-second measurement be used to quantify abiotic stress responses? Photosynthetica, 56(1), 86–104. doi: 10.1007/s11099-018-0770-3.
Strasser, R. J., Tsimilli-Michael, M., & Srivastava, A. (2004). Analysis of the Chlorophyll a Fluorescence Transient. In G. C. Papageorgiou & Govindjee (Eds.), Chlorophyll a Fluorescence (Vol. 19, pp. 321–362). Dordrecht, Netherland : Springer Netherlands.
Strauss, A. J., Krüger, G. H. J., Strasser, R. J., & Heerden, P. D. R. V. (2006). Ranking of dark chilling tolerance in soybean genotypes probed by the chlorophyll a fluorescence transient O-J-I-P. Environmental and Experimental Botany, 56(2), 147–157. doi: 10.1016/j.envexpbot.2005.01.011.
Taiz, L., & Zeiger, E. (2002). Plant physiology (3rd ed.). Sunderland, USA: Sinauer Associates.
Thomas, M., Thirruvithamkottil, M. sathik, Luke, L. P., Sumesh, K. V., Satheesh, P. R., Annamalainathan, K., & Jacob, J. (2012). Stress responsive transcripts and their association with drought tolerance in Hevea brasiliensis. Journal of Plantation Crops, 40, 180–187.
Thomas, M., Xavier, S. M., Sumesh, K. V., Annamalainathan, K., Nair, D. B., & Mercy, M. A. (2015). Identification of potential drought tolerant hevea germplasm accessions using physiological and biochemical parameters. Rubber Science, 28(1), 62–69.
Velázquez-Márquez, S., Conde-Martínez, V., Trejo, C., Delgado-Alvarado, A., Carballo, A., Suárez, R., Mascorro, J. O., & Trujillo, A. R. (2015). Effects of water deficit on radicle apex elongation and solute accumulation in Zea mays L. Plant Physiology and Biochemistry, 96, 29–37. doi: 10.1016/j.plaphy.2015.07.006.
Vicuna Requesens, D., Malone, R., & Dix, P. (2012). Increased tolerance to abiotic stresses in tobacco plants expressing a barley cell wall peroxidase. Journal of Plant Sciences, 6, 1–13. doi:10.3923/jps.2011.1.13.
Vijayakumar, K. R., Dey, S. K., Chandrasekhar, T. R., Devakumar, A. S., Mohankrishna, T., Rao, P. S., & Sethuraj, M. R. (1998). Irrigation requirement of rubber trees Hevea brasiliensis in the subhumid tropics. Agricultural Water Management, 35(3), 245–259.
Wang, L. (2014). Physiological and molecular responses to drought stress in rubber tree (Hevea brasiliensis Muell. Arg.). Plant Physiology and Biochemistry, 83, 243–249. doi: 10.1016/j.plaphy.2014.08.012.
Wang, Z., Li, G., Sun, H., Ma, L., Guo, Y., Zhao, Z., Gao, H., & Mei, L. (2018). Effects of drought stress on photosynthesis and photosynthetic electron transport chain in young apple tree leaves. Biology Open, 7(11), bio035279. doi:10.1242/bio.035279.
Xavier, S. M., Thomas, M., Sumesh, K. V., & Annamalainathan, K. (2018). Drought induced changes in leaf pigments and osmolyte contents in hevea germplasm accessions. Indian Journal of Scientific Research, 19(1), 61–67.
Xu, Y., & Crouch, J. H. (2008). Marker-assisted selection in plant breeding: from publications to practice. Crop Science, 48(2), 391 - 407. doi: 10.2135/cropsci2007.04.0191.
Yoshimura, K., Miyao, K., Gaber, A., Takeda, T., Kanaboshi, H., Miyasaka, H., & Shigeoka, S. (2004). Enhancement of stress tolerance in transgenic tobacco plants overexpressing Chlamydomonas glutathione peroxidase in chloroplasts or cytosol. The Plant Journal: For Cell and Molecular Biology, 37(1), 21–33. doi: 10.1046/j.1365-313x.2003.01930.x.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Andi Nur Cahyo
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Submission of a original research or review articles in Warta Perkaretan implies that the submitted  manuscript has not been published in any scientific journal (except being part of the abstract, thesis, or report). The submitted manuscript also is not under consideration for publication elsewhere. All co-authors involve in the publication of the manuscript should give their approval. Once, the manuscript is accepted and then published in Warta Perkaretan, the Author(s) keep hold the copyright and retain publishing right without restrictions. Author(s) and Warta Perkaretan users are allowed to multiply the published manuscript as long as not for commercial purposes. The journal users are also permissible to share the published manuscript with an acknowledgement to the Author(s). The Editorial Boards suggest that the Authors should manage patent before publishing their new inventions.