VULKANISASI LATEKS KARET ALAM DENGAN RADIASI ELEKTRON BEAM DENGAN PENAMBAHAN SINSITIZER MALEIK ANHIDRIDA

Authors

  • Mili Purbaya

Abstract

Vulkanisasi lateks karet alam merupakan proses penting untuk meningkatkan sifat mekanik dan stabilitas termal produk karet. Penelitian ini bertujuan untuk mengkaji pengaruh radiasi electron beam dalam vulkanisasi lateks karet alam dengan penambahan maleik anhidrida sebagai sensitizer. Penggunaan elektron beam sebagai metode crosslinking diharapkan dapat meningkatkan efisiensi vulkanisasi melalui pembentukan ikatan silang yang lebih optimal. Penelitian ini menggunakan metode eksperimen laboratorium dengan pendekatan analisis kuantitatif. Variabel bebas yang diuji adalah dosis radiasi electron beam (10, 30, 50, 100, 150, dan 200 kGy) serta konsentrasi maleik anhidrida (1 dan 2 bsk). Sebagai pembanding, vulkanisasi karet alam juga dilakukan tanpa penambahan maleik anhidrida. Evaluasi hasil modifikasi (variabel terikat) dilakukan melalui pengujian derajat swelling, densitas ikatan silang, fraksi gel, serta sifat fisik vulkanisat karet, yang mencakup kuat tarik, kuat sobek, modulus 300%, dan perpanjangan putus. Hasil penelitian menunjukkan bahwa penambahan maleik anhidrida secara signifikan meningkatkan densitas ikatan silang, yang berdampak pada peningkatan kuat tarik, kuat sobek, modulus, dan perpanjangan putus. Selain itu, dosis electron beam optimum ditemukan pada 150 kGy, dengan konsentrasi maleik anhidrida optimum sebesar 1 bsk, yang memberikan keseimbangan terbaik antara sifat mekanik dan elastisitas vulkanisat.

References

Balachandrakurup, V., George, N., & Gopalakrishnan, J. (2021). Effect of compatibiliser on the mechanical, rheological and thermal properties of natural rubber/Cellulose nanofibre composites. Materials Today: Proceedings, 47, 5345-5350. https://doi.org/https://doi.org/10.1016/j.matpr.2021.06.065

Bo?hm, G. G. A., & Tveekrem, J. O. (1982). The radiation chemistry of elastomers and its industrial applications. Rubber Chemistry and Technology, 55(3), 575-668. https://doi.org/10.5254/1.3535898

Craciun, G., Manaila, E., & Stelescu, M. D. (2016). New elastomeric materials based on natural rubber obtained by electron beam irradiation for food and pharmaceutical use. Materials, 9(12), 999. https://www.mdpi.com/1996-1944/9/12/999

Dominic C.D., M., Joseph, R., Begum, P. M. S., Joseph, M., Padmanabhan, D., Morris, L. A., Kumar, A. S., & Formela, K. (2020). Cellulose Nanofibers Isolated from the Cuscuta Reflexa Plant as a Green Reinforcement of Natural Rubber. Polymers, 12(4), 814. https://www.mdpi.com/2073-4360/12/4/814

Flory, P. J., & Rehner, J., Jr. (1943). Statistical mechanics of cross?linked polymer networks I. rubberlike elasticity. The Journal of Chemical Physics, 11(11), 512-520. https://doi.org/10.1063/1.1723791

Haque, M. D. E., Makuuchi, K., Mitomo, H., Yoshii, F., & Ikeda, K. (2005). A new trend in radiation vulcanization of natural rubber latex with a low energy electron beam. Polymer Journal, 37(5), 333-339. https://doi.org/10.1295/polymj.37.333

Kim, D. Y., Park, J. W., Lee, D. Y., & Seo, K. H. (2020). Correlation between the Crosslink Characteristics and Mechanical Properties of Natural Rubber Compound via Accelerators and Reinforcement. Polymers, 12(9), 2020. https://www.mdpi.com/2073-4360/12/9/2020

Mahendra, I. P., Wirjosentono, B., Tamrin, Ismail, H., Mendez, J. A., & Causin, V. (2019). The influence of maleic anhydride-grafted polymers as compatibilizer on the properties of polypropylene and cyclic natural rubber blends. Journal of Polymer Research, 26(9), 215. https://doi.org/10.1007/s10965-019-1878-2

Makuuchi, K., Yoshii, F., Ishigaki, I., Tsushima, K., Mogi, M., & Saito, T. (1990). Development of rubber gloves by radiation vulcanization. International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry, 35(1), 154-157. https://doi.org/https://doi.org/10.1016/1359-0197(90)90075-S

Manaila, E., Craciun, G., Stelescu, M.-D., Ighigeanu, D., & Ficai, M. (2014). Radiation vulcanization of natural rubber with polyfunctional monomers. Polymer Bulletin, 71(1), 57-82. https://doi.org/10.1007/s00289-013-1045-6

Nakason, C., Kaesaman, A., & Supasanthitikul, P. (2004). The grafting of maleic anhydride onto natural rubber. Polymer Testing, 23(1), 35-41. https://doi.org/https://doi.org/10.1016/S0142-9418(03)00059-X

Pongsathit, S., & Pattamaprom, C. (2018). Irradiation grafting of natural rubber latex with maleic anhydride and its compatibilization of poly(lactic acid)/natural rubber blends. Radiation Physics and Chemistry, 144, 13-20. https://doi.org/https://doi.org/10.1016/j.radphyschem.2017.11.006

Purbaya, M., Kobayashi, T., Thamrongsiripak, N., Hayichelaeh, C., & Boonkerd, K. (2024). Sulfur as an effective sensitizer for natural rubber vulcanized via electron beam irradiation. Polymers for Advanced Technologies, 35(7), e6523. https://doi.org/https://doi.org/10.1002/pat.6523

Said Siregar, M., Ardilla, D., Eddiyanto, & Nasution, A. S. (2021). Grafting of Maleic Anhydride onto Cyclized Natural Rubber in the Melt Phase: the Effect of Trimethylol Propane Triacrylate. Journal of Physics: Conference Series, 1764(1), 012200. https://doi.org/10.1088/1742-6596/1764/1/012200

Srirachya, N., Kobayashi, T., & Boonkerd, K. (2017). An alternative crosslinking of epoxidized natural rubber with maleic anhydride. Key Engineering Materials, 748, 84-90. https://doi.org/10.4028/www.scientific.net/kem.748.84

Ujianto, O., Noviyanti, R., Wijaya, R., & Ramadhoni, B. (2017). Effect of maleated natural rubber on tensile strength and compatibility of natural rubber/coconut coir composite. IOP Conference Series: Materials Science and Engineering, 223(1), 012014. https://doi.org/10.1088/1757-899X/223/1/012014

Wongthong, P., Nakason, C., Pan, Q., Rempel, G. L., & Kiatkamjornwong, S. (2013). Modification of deproteinized natural rubber via grafting polymerization with maleic anhydride. European Polymer Journal, 49(12), 4035-4046. https://doi.org/https://doi.org/10.1016/j.eurpolymj.2013.09.009

Zhang, H., Datta, R. N., Talma, A. G., & Noordermeer, J. W. M. (2010). Maleic-anhydride grafted EPM as compatibilising agent in NR/BR/EPDM blends. European Polymer Journal, 46(4), 754-766. https://doi.org/https://doi.org/10.1016/j.eurpolymj.2009.12.020

Published

2025-12-31

How to Cite

Purbaya, M. (2025). VULKANISASI LATEKS KARET ALAM DENGAN RADIASI ELEKTRON BEAM DENGAN PENAMBAHAN SINSITIZER MALEIK ANHIDRIDA. Jurnal Penelitian Karet, 43(2). Retrieved from https://ejournal.puslitkaret.co.id/index.php/jpk/article/view/1108

Issue

Section

Original Research Article