VULKANISASI LATEKS KARET ALAM DENGAN RADIASI ELEKTRON BEAM DENGAN PENAMBAHAN SENSITIZER MALEIK ANHIDRIDA
DOI:
https://doi.org/10.22302/ppk.jpk.v43i2.1108Keywords:
karet alam, radiasi elektron beam, maleik anhidrida, vulkanisasi, sifat mekanikAbstract
Vulkanisasi lateks karet alam merupakan proses penting untuk meningkatkan sifat mekanik dan stabilitas termal produk karet. Penelitian ini bertujuan untuk mengkaji pengaruh radiasi elektron beam terhadap proses vulkanisasi lateks karet alam dengan penambahan maleik anhidrida sebagai sensitizer. Penggunaan elektron beam sebagai metode pembentukan ikatan silang diharapkan dapat meningkatkan efisiensi vulkanisasi sekaligus mengurangi ketergantungan terhadap bahan kimia vulkanisasi konvensional. Penelitian ini menggunakan metode eksperimen laboratorium dengan pendekatan kuantitatif. Variabel bebas yang diuji meliputi dosis radiasi elektron beam sebesar 10, 30, 50, 100, 150, dan 200 kGy serta konsentrasi maleik anhidrida sebesar 1 dan 2 bsk. Sebagai pembanding, lateks karet alam tanpa penambahan maleik anhidrida juga divulkanisasi pada kondisi iradiasi yang sama. Kinerja vulkanisasi dievaluasi melalui
pengujian derajat swelling, densitas ikatan silang, fraksi gel, serta sifat mekanik karet vulkanisat yang meliputi kuat tarik, kuat sobek, modulus pada regangan 300%, dan perpanjangan putus. Hasil penelitian menunjukkan bahwa penambahan maleik anhidrida secara signifikan meningkatkan densitas ikatan silang, yang berkorelasi langsung dengan peningkatan kuat tarik, kuat sobek, dan modulus karet vulkanisat. Kombinasi dosis iradiasi elektron beam sebesar 150 kGy dengan konsentrasi maleik anhidrida 1 bsk memberikan keseimbangan terbaik antara kekuatan mekanik dan elastisitas karet. Temuan ini menegaskan peran maleik anhidrida sebagai sensitizer yang efektif dalam proses vulkanisasi berbasis iradiasi elektron beam, karena mampu mempercepat pembentukan radikal bebas dan meningkatkan efisiensi pembentukan ikatan silang pada dosis iradiasi yang lebih rendah. Secara teoritis, penelitian ini memperkaya pemahaman mekanisme pembentukan jaringan ikatan silang karet alam akibat radiasi, sementara secara praktis menawarkan pendekatan vulkanisasi yang lebih ramah lingkungan sebagai alternatif terhadap proses vulkanisasi konvensional berbasis sulfur.
References
Balachandrakurup, V., George, N., & Gopalakrishnan, J. (2021). Effect of compatibiliser on the mechanical, rheological and thermal properties of natural rubber/Cellulose nanofibre composites. Materials Today: Proceedings, 47, 5345-5350. https://doi.org/https://doi.org/10.1016/j.matpr.2021.06.065
Bo?hm, G. G. A., & Tveekrem, J. O. (1982). The radiation chemistry of elastomers and its industrial applications. Rubber Chemistry and Technology, 55(3), 575-668. https://doi.org/10.5254/1.3535898
Dominic C.D., M., Joseph, R., Begum, P. M. S., Joseph, M., Padmanabhan, D., Morris, L. A., Kumar, A. S., & Formela, K. (2020). Cellulose Nanofibers Isolated from the Cuscuta Reflexa Plant as a Green Reinforcement of Natural Rubber. Polymers, 12(4), 814. https://www.mdpi.com/2073-4360/12/4/814
Flory, P. J., & Rehner, J., Jr. (1943). Statistical mechanics of cross?linked polymer networks I. rubberlike elasticity. The Journal of Chemical Physics, 11(11), 512-520. https://doi.org/10.1063/1.1723791
Haque, M. D. E., Makuuchi, K., Mitomo, H., Yoshii, F., & Ikeda, K. (2005). A new trend in radiation vulcanization of natural rubber latex with a low energy electron beam. Polymer Journal, 37(5), 333-339. https://doi.org/10.1295/polymj.37.333
Kim, D. Y., Park, J. W., Lee, D. Y., & Seo, K. H. (2020). Correlation between the Crosslink Characteristics and Mechanical Properties of Natural Rubber Compound via Accelerators and Reinforcement. Polymers, 12(9), 2020. https://www.mdpi.com/2073-4360/12/9/2020
Mahendra, I. P., Wirjosentono, B., Tamrin, Ismail, H., Mendez, J. A., & Causin, V. (2019). The influence of maleic anhydride-grafted polymers as compatibilizer on the properties of polypropylene and cyclic natural rubber blends. Journal of Polymer Research, 26(9), 215. https://doi.org/10.1007/s10965-019-1878-2
Makuuchi, K., Yoshii, F., Ishigaki, I., Tsushima, K., Mogi, M., & Saito, T. (1990). Development of rubber gloves by radiation vulcanization. International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry, 35(1), 154-157. https://doi.org/https://doi.org/10.1016/1359-0197(90)90075-S
Nakason, C., Kaesaman, A., & Supasanthitikul, P. (2004). The grafting of maleic anhydride onto natural rubber. Polymer Testing, 23(1), 35-41. https://doi.org/https://doi.org/10.1016/S0142-9418(03)00059-X
Pongsathit, S., & Pattamaprom, C. (2018). Irradiation grafting of natural rubber latex with maleic anhydride and its compatibilization of poly(lactic acid)/natural rubber blends. Radiation Physics and Chemistry, 144, 13-20. https://doi.org/https://doi.org/10.1016/j.radphyschem.2017.11.006
Purbaya, M., Kobayashi, T., Thamrongsiripak, N., Hayichelaeh, C., & Boonkerd, K. (2023). Electron beam irradiation for enhancing the properties of natural rubber latex. Radiation Physics and Chemistry, 212, 111193. https://doi.org/https://doi.org/10.1016/j.radphyschem.2023.111193
Purbaya, M., Kobayashi, T., Thamrongsiripak, N., Hayichelaeh, C., & Boonkerd, K. (2024). Sulfur as an effective sensitizer for natural rubber vulcanized via electron beam irradiation. Polymers for Advanced Technologies, 35(7), e6523. https://doi.org/https://doi.org/10.1002/pat.6523
Said Siregar, M., Ardilla, D., Eddiyanto, & Nasution, A. S. (2021). Grafting of Maleic Anhydride onto Cyclized Natural Rubber in the Melt Phase: the Effect of Trimethylol Propane Triacrylate. Journal of Physics: Conference Series, 1764(1), 012200. https://doi.org/10.1088/1742-6596/1764/1/012200
Srirachya, N., Kobayashi, T., & Boonkerd, K. (2017). An alternative crosslinking of epoxidized natural rubber with maleic anhydride. Key Engineering Materials, 748, 84-90. https://doi.org/10.4028/www.scientific.net/kem.748.84
Ujianto, O., Noviyanti, R., Wijaya, R., & Ramadhoni, B. (2017). Effect of maleated natural rubber on tensile strength and compatibility of natural rubber/coconut coir composite. IOP Conference Series: Materials Science and Engineering, 223(1), 012014. https://doi.org/10.1088/1757-899X/223/1/012014
Wongthong, P., Nakason, C., Pan, Q., Rempel, G. L., & Kiatkamjornwong, S. (2013). Modification of deproteinized natural rubber via grafting polymerization with maleic anhydride. European Polymer Journal, 49(12), 4035-4046. https://doi.org/https://doi.org/10.1016/j.eurpolymj.2013.09.009
Zhang, H., Datta, R. N., Talma, A. G., & Noordermeer, J. W. M. (2010). Maleic-anhydride grafted EPM as compatibilising agent in NR/BR/EPDM blends. European Polymer Journal, 46(4), 754-766. https://doi.org/https://doi.org/10.1016/j.eurpolymj.2009.12.020
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Mili Purbaya

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Submission of a original research article in Jurnal Penelitian Karet implies that the submitted  manuscript has not been published in any scientific journal (except being part of the abstract, thesis, or report). The submitted manuscript also is not under consideration for publication elsewhere. All co-authors involve in the publication of the manuscript should give their approval.
Once, the manuscript is accepted and then published in Jurnal penelitian Karet, the Author(s) keep hold the copyright and retain publishing right without restrictions.
Author(s) and Jurnal Penelitian Karet users are allowed to multiply the published manuscript. The journal users are also permissible to share the published manuscript with an acknowledgement to the Author(s). The Editorial Boards suggest that the Authors should manage patent before publishing their new inventions.












