ANALISIS SISTEM PENGOLAHAN TANAH TERHADAP EMISI CO2 DARI TANAH PADA TANAMAN KARET UMUR 12 TAHUN

Authors

DOI:

https://doi.org/10.22302/ppk.jpk.v42i1.954

Keywords:

emisi CO2, Perkebunan karet, tanpa olah tanah, pengolahan tanah, gas rumah kaca

Abstract

Pengolahan tanah di perkebunan karet umumnya dilakukan secara mekanis karena selain cepat, sistem ini juga efektif dalam mengeluarkan perakaran dan kayu pada area penanaman karet. Namun karena biaya penyiapan lahan secara mekanis besar dan adanya larangan metode bakar pada persiapan lahan menyebabkan sebagian besar perkebunan karet rakyat maupun perkebunan karet besar berstatus Hutan Tanaman Industri (HTI) lebih memilih menggunakan penyiapan lahan dengan tanpa olah tanah. Hal ini mempunyai efek terhadap emisi CO2 sebagai penyumbang gas rumah kaca. Tujuan penelitian ini adalah untuk membandingkan pengaruh sistem tanpa olah tanah dan olah tanah terhadap emisi CO2 pada tanaman karet berumur 12 tahun serta menganalisis faktor-faktor yang mempengaruhinya. Penelitian dilaksanakan pada bulan Juni sampai Juli 2023 di Kebun Pusat Penelitian Karet di tanaman karet tahun tanam 2011. Metode yang digunakan adalah mengukur emisi CO2 pada perlakuan tanpa olah tanah dan olah tanah pada perkebunan karet umur 12 tahun dan menganalisis menggunakan uji-t. Variabel faktor yang mempengaruhi emisi CO2 pada penelitian ini antara lain : C-organik, bobot isi dan kadar air dan dianalisis menggunakan uji korelasi. Hasil penelitian menunjukkan bahwa emisi CO2 sesaat perlakuan tanpa pengolahan tanah lebih tinggi dan berbeda nyata dibandingkan olah tanah. Hasil uji analisis korelasi menunjukkan bahwa c-organik dan kadar air berkorelasi positif signifikan terhadap emisi CO2, sementara bobot isi nyata berkorelasi negatif signifikan terhadap emisi Co2.

References

Alskaf, K., Mooney, S. J., Sparkes, D. L., Wilson, P., & Sjögersten, S. (2021). Short-term impacts of different tillage practices and plant residue retention on soil physical properties and greenhouse gas emissions. Soil and Tillage Research, 206, 104803. https://doi.org/10.1016/j.still.2020.104803

Artemyeva, Z., & Kogut, B. (2016). The Effect of Tillage on Organic Carbon Stabilization in Microaggregates in Different Climatic Zones of European Russia. Agriculture, 6(4), 63. https://doi.org/10.3390/agriculture6040063

Balesdent, J., Chenu, C., & Balabane, M. (2000). Relationship of soil organic matter dynamics to physical protection and tillage. Soil and Tillage Research, 53(3–4), 215–230. https://doi.org/10.1016/S0167-1987(99)00107-5

Cooper, H. V., Sjögersten, S., Lark, R. M., Girkin, N. T., Vane, C. H., Calonego, J. C., Rosolem, C., & Mooney, S. J. (2021). Long-term zero-tillage enhances the protection of soil carbon in tropical agriculture. European Journal of Soil Science, 72(6), 2477–2492. https://doi.org/10.1111/ejss.13111

Felde, V. J. M. N. L., Schweizer, S. A., Biesgen, D., Ulbrich, A., Uteau, D., Knief, C., Graf-Rosenfellner, M., Kögel-Knabner, I., & Peth, S. (2021). Wet sieving versus dry crushing: Soil microaggregates reveal different physical structure, bacterial diversity and organic matter composition in a clay gradient. European Journal of Soil Science, 72(2), 810–828. https://doi.org/10.1111/ejss.13014

Haddaway, N. R., Hedlund, K., Jackson, L. E., Kätterer, T., Lugato, E., Thomsen, I. K., Jørgensen, H. B., & Isberg, P.-E. (2017). How does tillage intensity affect soil organic carbon? A systematic review. Environmental Evidence, 6(1), 30. https://doi.org/10.1186/s13750-017-0108-9

Hossain, Md. B., Rahman, Md. M., Biswas, J. C., Miah, Md. M. U., Akhter, S., Maniruzzaman, Md., Choudhury, A. K., Ahmed, F., Shiragi, Md. H. K., & Kalra, N. (2017). Carbon mineralization and carbon dioxide emission from organic matter added soil under different temperature regimes. International Journal of Recycling of Organic Waste in Agriculture, 6(4), 311–319. https://doi.org/10.1007/s40093-017-0179-1

Igwe, C. A., & Obalum, S. E. (2013). Microaggregate Stability of Tropical Soils and its Roles on Soil Erosion Hazard Prediction. In S. Grundas (Ed.), Advances in Agrophysical Research. InTech. https://doi.org/10.5772/52473

Jensen, J. L., Schjønning, P., Watts, C. W., Christensen, B. T., Obour, P. B., & Munkholm, L. J. (2020). Soil degradation and recovery – Changes in organic matter fractions and structural stability. Geoderma, 364, 114181. https://doi.org/10.1016/j.geoderma.2020.114181

Kementerian Lingkungan Hidup dan Kehutanan. (2021). Indonesia Long-Term Strategy for Low Carbon and Climate Resilience 2050 (Indonesia LTS-LCCR 2050) (p. 156).

Kusdiana, A. P. J., Alamsyah, A., & Hanifarianty, S. (2012). Estimasi fiksasi co2 oleh klon karet RRIM 600 dan GT 1. Konferensi Nasional Karet, 228–234.

Linsler, D., Geisseler, D., Loges, R., Taube, F., & Ludwig, B. (2013). Temporal dynamics of soil organic matter composition and aggregate distribution in permanent grassland after a single tillage event in a temperate climate. Soil and Tillage Research, 126, 90–99. https://doi.org/10.1016/j.still.2012.07.017

Nugroho, P. A. (2019). Soil Tillage in Land Clearing for Rubber Plantation. Perspektif, 17(2), 129. https://doi.org/10.21082/psp.v17n2.2018.129-138

Poblador, S., Lupon, A., Sabaté, S., & Sabater, F. (2017). Soil water content drives spatiotemporal patterns of CO<sub>2</sub> and N<sub>2</sub>O emissions from a Mediterranean riparian forest soil. Biogeosciences, 14(18), 4195–4208. https://doi.org/10.5194/bg-14-4195-2017

Robertson, G. P. (2014). Soil Greenhouse Gas Emissions and Their Mitigation. In Encyclopedia of Agriculture and Food Systems (pp. 185–196). Elsevier. https://doi.org/10.1016/B978-0-444-52512-3.00097-8

Steponavi?ien?, V., Bogužas, V., Sinkevi?ien?, A., Skinulien?, L., Vaisvalavi?ius, R., & Sinkevi?ius, A. (2022). Soil Water Capacity, Pore Size Distribution, and CO2 Emission in Different Soil Tillage Systems and Straw Retention. Plants, 11(5), 614. https://doi.org/10.3390/plants11050614

Stevanus, C. T., & Sahuri, P. O. (2014). Potensi Peningkatan Penyerapan Karbon di Perkebunan Karet Sembawa, Sumatera Selatan. Widyariset, 17(3), 363–372.

Szostek, M., Szpunar-Krok, E., Pawlak, R., Stanek-Tarkowska, J., & Ilek, A. (2022). Effect of Different Tillage Systems on Soil Organic Carbon and Enzymatic Activity. Agronomy, 12(1), 208. https://doi.org/10.3390/agronomy12010208

Tubiello, F. N., Salvatore, M., Rossi, S., Ferrara, A., Fitton, N., & Smith, P. (2013). The FAOSTAT database of greenhouse gas emissions from agriculture. Environmental Research Letters, 8(1), 015009. https://doi.org/10.1088/1748-9326/8/1/015009

Verdi, L., Mancini, M., Ljubojevic, M., Orlandini, S., & Dalla Marta, A. (2018). Greenhouse gas and ammonia emissions from soil: The effect of organic matter and fertilisation method. Italian Journal of Agronomy, 13(3), 260–266. https://doi.org/10.4081/ija.2018.1124

Xavier, C. V., Moitinho, M. R., De Bortoli Teixeira, D., André de Araújo Santos, G., de Andrade Barbosa, M., Bastos Pereira Milori, D. M., Rigobelo, E., Corá, J. E., & La Scala Júnior, N. (2019). Crop rotation and succession in a no-tillage system: Implications for CO2 emission and soil attributes. Journal of Environmental Management, 245, 8–15. https://doi.org/10.1016/j.jenvman.2019.05.053

Zhou, W.-J., Ji, H., Zhu, J., Zhang, Y.-P., Sha, L.-Q., Liu, Y.-T., Zhang, X., Zhao, W., Dong, Y., Bai, X.-L., Lin, Y.-X., Zhang, J.-H., & Zheng, X.-H. (2016). The effects of nitrogen fertilization on N2O emissions from a rubber plantation. Scientific Reports, 6(1), 28230. https://doi.org/10.1038/srep28230

Badan Pusat Statistik. (2022). Statistik Indonesia 2022. Badan Pusat Statistik

Downloads

Published

2024-06-24

How to Cite

Stevanus, C. T., BAKRI, B., & SETIAWAN, B. . (2024). ANALISIS SISTEM PENGOLAHAN TANAH TERHADAP EMISI CO2 DARI TANAH PADA TANAMAN KARET UMUR 12 TAHUN. Jurnal Penelitian Karet, 42(1), 1–8. https://doi.org/10.22302/ppk.jpk.v42i1.954

Issue

Section

Original Research Article